aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/include/asm/msr-index.h (follow)
AgeCommit message (Collapse)AuthorFilesLines
2022-08-01Merge remote-tracking branch 'kvm/next' into kvm-next-5.20Paolo Bonzini1-0/+7
KVM/s390, KVM/x86 and common infrastructure changes for 5.20 x86: * Permit guests to ignore single-bit ECC errors * Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache * Intel IPI virtualization * Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS * PEBS virtualization * Simplify PMU emulation by just using PERF_TYPE_RAW events * More accurate event reinjection on SVM (avoid retrying instructions) * Allow getting/setting the state of the speaker port data bit * Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent * "Notify" VM exit (detect microarchitectural hangs) for Intel * Cleanups for MCE MSR emulation s390: * add an interface to provide a hypervisor dump for secure guests * improve selftests to use TAP interface * enable interpretive execution of zPCI instructions (for PCI passthrough) * First part of deferred teardown * CPU Topology * PV attestation * Minor fixes Generic: * new selftests API using struct kvm_vcpu instead of a (vm, id) tuple x86: * Use try_cmpxchg64 instead of cmpxchg64 * Bugfixes * Ignore benign host accesses to PMU MSRs when PMU is disabled * Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior * x86/MMU: Allow NX huge pages to be disabled on a per-vm basis * Port eager page splitting to shadow MMU as well * Enable CMCI capability by default and handle injected UCNA errors * Expose pid of vcpu threads in debugfs * x2AVIC support for AMD * cleanup PIO emulation * Fixes for LLDT/LTR emulation * Don't require refcounted "struct page" to create huge SPTEs x86 cleanups: * Use separate namespaces for guest PTEs and shadow PTEs bitmasks * PIO emulation * Reorganize rmap API, mostly around rmap destruction * Do not workaround very old KVM bugs for L0 that runs with nesting enabled * new selftests API for CPUID
2022-07-28tools/power turbostat: dump secondary Turbo-Ratio-LimitLen Brown1-0/+1
Intel Performance Hybrid processors have a 2nd MSR describing the turbo limits enforced on the Ecores. Note, TRL and Secondary-TRL are usually R/O information, but on overclock-capable parts, they can be written. Signed-off-by: Len Brown <len.brown@intel.com>
2022-07-09x86/speculation: Disable RRSBA behaviorPawan Gupta1-0/+9
Some Intel processors may use alternate predictors for RETs on RSB-underflow. This condition may be vulnerable to Branch History Injection (BHI) and intramode-BTI. Kernel earlier added spectre_v2 mitigation modes (eIBRS+Retpolines, eIBRS+LFENCE, Retpolines) which protect indirect CALLs and JMPs against such attacks. However, on RSB-underflow, RET target prediction may fallback to alternate predictors. As a result, RET's predicted target may get influenced by branch history. A new MSR_IA32_SPEC_CTRL bit (RRSBA_DIS_S) controls this fallback behavior when in kernel mode. When set, RETs will not take predictions from alternate predictors, hence mitigating RETs as well. Support for this is enumerated by CPUID.7.2.EDX[RRSBA_CTRL] (bit2). For spectre v2 mitigation, when a user selects a mitigation that protects indirect CALLs and JMPs against BHI and intramode-BTI, set RRSBA_DIS_S also to protect RETs for RSB-underflow case. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de>
2022-06-27x86/cpu/amd: Add Spectral ChickenPeter Zijlstra1-0/+3
Zen2 uarchs have an undocumented, unnamed, MSR that contains a chicken bit for some speculation behaviour. It needs setting. Note: very belatedly AMD released naming; it's now officially called MSR_AMD64_DE_CFG2 and MSR_AMD64_DE_CFG2_SUPPRESS_NOBR_PRED_BIT but shall remain the SPECTRAL CHICKEN. Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de>
2022-06-27x86/bugs: Report Intel retbleed vulnerabilityPeter Zijlstra1-0/+1
Skylake suffers from RSB underflow speculation issues; report this vulnerability and it's mitigation (spectre_v2=ibrs). [jpoimboe: cleanups, eibrs] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de>
2022-06-14Merge tag 'x86-bugs-2022-06-01' of ↵Linus Torvalds1-0/+25
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 MMIO stale data fixes from Thomas Gleixner: "Yet another hw vulnerability with a software mitigation: Processor MMIO Stale Data. They are a class of MMIO-related weaknesses which can expose stale data by propagating it into core fill buffers. Data which can then be leaked using the usual speculative execution methods. Mitigations include this set along with microcode updates and are similar to MDS and TAA vulnerabilities: VERW now clears those buffers too" * tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/speculation/mmio: Print SMT warning KVM: x86/speculation: Disable Fill buffer clear within guests x86/speculation/mmio: Reuse SRBDS mitigation for SBDS x86/speculation/srbds: Update SRBDS mitigation selection x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data x86/speculation/mmio: Enable CPU Fill buffer clearing on idle x86/bugs: Group MDS, TAA & Processor MMIO Stale Data mitigations x86/speculation/mmio: Add mitigation for Processor MMIO Stale Data x86/speculation: Add a common function for MD_CLEAR mitigation update x86/speculation/mmio: Enumerate Processor MMIO Stale Data bug Documentation: Add documentation for Processor MMIO Stale Data
2022-06-08KVM: x86/pmu: Add IA32_PEBS_ENABLE MSR emulation for extended PEBSLike Xu1-0/+6
If IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14] is set, the IA32_PEBS_ENABLE MSR exists and all architecturally enumerated fixed and general-purpose counters have corresponding bits in IA32_PEBS_ENABLE that enable generation of PEBS records. The general-purpose counter bits start at bit IA32_PEBS_ENABLE[0], and the fixed counter bits start at bit IA32_PEBS_ENABLE[32]. When guest PEBS is enabled, the IA32_PEBS_ENABLE MSR will be added to the perf_guest_switch_msr() and atomically switched during the VMX transitions just like CORE_PERF_GLOBAL_CTRL MSR. Based on whether the platform supports x86_pmu.pebs_ept, it has also refactored the way to add more msrs to arr[] in intel_guest_get_msrs() for extensibility. Originally-by: Andi Kleen <ak@linux.intel.com> Co-developed-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Co-developed-by: Luwei Kang <luwei.kang@intel.com> Signed-off-by: Luwei Kang <luwei.kang@intel.com> Signed-off-by: Like Xu <like.xu@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Message-Id: <20220411101946.20262-8-likexu@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08x86/cpu: Add new VMX feature, Tertiary VM-Execution controlRobert Hoo1-0/+1
A new 64-bit control field "tertiary processor-based VM-execution controls", is defined [1]. It's controlled by bit 17 of the primary processor-based VM-execution controls. Different from its brother VM-execution fields, this tertiary VM- execution controls field is 64 bit. So it occupies 2 vmx_feature_leafs, TERTIARY_CTLS_LOW and TERTIARY_CTLS_HIGH. Its companion VMX capability reporting MSR,MSR_IA32_VMX_PROCBASED_CTLS3 (0x492), is also semantically different from its brothers, whose 64 bits consist of all allow-1, rather than 32-bit allow-0 and 32-bit allow-1 [1][2]. Therefore, its init_vmx_capabilities() is a little different from others. [1] ISE 6.2 "VMCS Changes" https://www.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html [2] SDM Vol3. Appendix A.3 Reviewed-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Robert Hoo <robert.hu@linux.intel.com> Signed-off-by: Zeng Guang <guang.zeng@intel.com> Message-Id: <20220419153240.11549-1-guang.zeng@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-05-24Merge tag 'pm-5.19-rc1' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management updates from Rafael Wysocki: "These add support for 'artificial' Energy Models in which power numbers for different entities may be in different scales, add support for some new hardware, fix bugs and clean up code in multiple places. Specifics: - Update the Energy Model support code to allow the Energy Model to be artificial, which means that the power values may not be on a uniform scale with other devices providing power information, and update the cpufreq_cooling and devfreq_cooling thermal drivers to support artificial Energy Models (Lukasz Luba). - Make DTPM check the Energy Model type (Lukasz Luba). - Fix policy counter decrementation in cpufreq if Energy Model is in use (Pierre Gondois). - Add CPU-based scaling support to passive devfreq governor (Saravana Kannan, Chanwoo Choi). - Update the rk3399_dmc devfreq driver (Brian Norris). - Export dev_pm_ops instead of suspend() and resume() in the IIO chemical scd30 driver (Jonathan Cameron). - Add namespace variants of EXPORT[_GPL]_SIMPLE_DEV_PM_OPS and PM-runtime counterparts (Jonathan Cameron). - Move symbol exports in the IIO chemical scd30 driver into the IIO_SCD30 namespace (Jonathan Cameron). - Avoid device PM-runtime usage count underflows (Rafael Wysocki). - Allow dynamic debug to control printing of PM messages (David Cohen). - Fix some kernel-doc comments in hibernation code (Yang Li, Haowen Bai). - Preserve ACPI-table override during hibernation (Amadeusz Sławiński). - Improve support for suspend-to-RAM for PSCI OSI mode (Ulf Hansson). - Make Intel RAPL power capping driver support the RaptorLake and AlderLake N processors (Zhang Rui, Sumeet Pawnikar). - Remove redundant store to value after multiply in the RAPL power capping driver (Colin Ian King). - Add AlderLake processor support to the intel_idle driver (Zhang Rui). - Fix regression leading to no genpd governor in the PSCI cpuidle driver and fix the riscv-sbi cpuidle driver to allow a genpd governor to be used (Ulf Hansson). - Fix cpufreq governor clean up code to avoid using kfree() directly to free kobject-based items (Kevin Hao). - Prepare cpufreq for powerpc's asm/prom.h cleanup (Christophe Leroy). - Make intel_pstate notify frequency invariance code when no_turbo is turned on and off (Chen Yu). - Add Sapphire Rapids OOB mode support to intel_pstate (Srinivas Pandruvada). - Make cpufreq avoid unnecessary frequency updates due to mismatch between hardware and the frequency table (Viresh Kumar). - Make remove_cpu_dev_symlink() clear the real_cpus mask to simplify code (Viresh Kumar). - Rearrange cpufreq_offline() and cpufreq_remove_dev() to make the calling convention for some driver callbacks consistent (Rafael Wysocki). - Avoid accessing half-initialized cpufreq policies from the show() and store() sysfs functions (Schspa Shi). - Rearrange cpufreq_offline() to make the calling convention for some driver callbacks consistent (Schspa Shi). - Update CPPC handling in cpufreq (Pierre Gondois). - Extend dev_pm_domain_detach() doc (Krzysztof Kozlowski). - Move genpd's time-accounting to ktime_get_mono_fast_ns() (Ulf Hansson). - Improve the way genpd deals with its governors (Ulf Hansson). - Update the turbostat utility to version 2022.04.16 (Len Brown, Dan Merillat, Sumeet Pawnikar, Zephaniah E. Loss-Cutler-Hull, Chen Yu)" * tag 'pm-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (94 commits) PM: domains: Trust domain-idle-states from DT to be correct by genpd PM: domains: Measure power-on/off latencies in genpd based on a governor PM: domains: Allocate governor data dynamically based on a genpd governor PM: domains: Clean up some code in pm_genpd_init() and genpd_remove() PM: domains: Fix initialization of genpd's next_wakeup PM: domains: Fixup QoS latency measurements for IRQ safe devices in genpd PM: domains: Measure suspend/resume latencies in genpd based on governor PM: domains: Move the next_wakeup variable into the struct gpd_timing_data PM: domains: Allocate gpd_timing_data dynamically based on governor PM: domains: Skip another warning in irq_safe_dev_in_sleep_domain() PM: domains: Rename irq_safe_dev_in_no_sleep_domain() in genpd PM: domains: Don't check PM_QOS_FLAG_NO_POWER_OFF in genpd PM: domains: Drop redundant code for genpd always-on governor PM: domains: Add GENPD_FLAG_RPM_ALWAYS_ON for the always-on governor powercap: intel_rapl: remove redundant store to value after multiply cpufreq: CPPC: Enable dvfs_possible_from_any_cpu cpufreq: CPPC: Enable fast_switch ACPI: CPPC: Assume no transition latency if no PCCT ACPI: bus: Set CPPC _OSC bits for all and when CPPC_LIB is supported ACPI: CPPC: Check _OSC for flexible address space ...
2022-05-24Merge tag 'perf-core-2022-05-23' of ↵Linus Torvalds1-0/+9
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf events updates from Ingo Molnar: "Platform PMU changes: - x86/intel: - Add new Intel Alder Lake and Raptor Lake support - x86/amd: - AMD Zen4 IBS extensions support - Add AMD PerfMonV2 support - Add AMD Fam19h Branch Sampling support Generic changes: - signal: Deliver SIGTRAP on perf event asynchronously if blocked Perf instrumentation can be driven via SIGTRAP, but this causes a problem when SIGTRAP is blocked by a task & terminate the task. Allow user-space to request these signals asynchronously (after they get unblocked) & also give the information to the signal handler when this happens: "To give user space the ability to clearly distinguish synchronous from asynchronous signals, introduce siginfo_t::si_perf_flags and TRAP_PERF_FLAG_ASYNC (opted for flags in case more binary information is required in future). The resolution to the problem is then to (a) no longer force the signal (avoiding the terminations), but (b) tell user space via si_perf_flags if the signal was synchronous or not, so that such signals can be handled differently (e.g. let user space decide to ignore or consider the data imprecise). " - Unify/standardize the /sys/devices/cpu/events/* output format. - Misc fixes & cleanups" * tag 'perf-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits) perf/x86/amd/core: Fix reloading events for SVM perf/x86/amd: Run AMD BRS code only on supported hw perf/x86/amd: Fix AMD BRS period adjustment perf/x86/amd: Remove unused variable 'hwc' perf/ibs: Fix comment perf/amd/ibs: Advertise zen4_ibs_extensions as pmu capability attribute perf/amd/ibs: Add support for L3 miss filtering perf/amd/ibs: Use ->is_visible callback for dynamic attributes perf/amd/ibs: Cascade pmu init functions' return value perf/x86/uncore: Add new Alder Lake and Raptor Lake support perf/x86/uncore: Clean up uncore_pci_ids[] perf/x86/cstate: Add new Alder Lake and Raptor Lake support perf/x86/msr: Add new Alder Lake and Raptor Lake support perf/x86: Add new Alder Lake and Raptor Lake support perf/amd/ibs: Use interrupt regs ip for stack unwinding perf/x86/amd/core: Add PerfMonV2 overflow handling perf/x86/amd/core: Add PerfMonV2 counter control perf/x86/amd/core: Detect available counters perf/x86/amd/core: Detect PerfMonV2 support x86/msr: Add PerfCntrGlobal* registers ...
2022-05-23Merge tag 'platform-drivers-x86-v5.19-1' of ↵Linus Torvalds1-0/+7
git://git.kernel.org/pub/scm/linux/kernel/git/pdx86/platform-drivers-x86 Pull x86 platform driver updates from Hans de Goede: "This includes some small changes to kernel/stop_machine.c and arch/x86 which are deps of the new Intel IFS support. Highlights: - New drivers: - Intel "In Field Scan" (IFS) support - Winmate FM07/FM07P buttons - Mellanox SN2201 support - AMD PMC driver enhancements - Lots of various other small fixes and hardware-id additions" * tag 'platform-drivers-x86-v5.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/pdx86/platform-drivers-x86: (54 commits) platform/x86/intel/ifs: Add CPU_SUP_INTEL dependency platform/x86: intel_cht_int33fe: Set driver data platform/x86: intel-hid: fix _DSM function index handling platform/x86: toshiba_acpi: use kobj_to_dev() platform/x86: samsung-laptop: use kobj_to_dev() platform/x86: gigabyte-wmi: Add support for Z490 AORUS ELITE AC and X570 AORUS ELITE WIFI tools/power/x86/intel-speed-select: Fix warning for perf_cap.cpu tools/power/x86/intel-speed-select: Display error on turbo mode disabled Documentation: In-Field Scan platform/x86/intel/ifs: add ABI documentation for IFS trace: platform/x86/intel/ifs: Add trace point to track Intel IFS operations platform/x86/intel/ifs: Add IFS sysfs interface platform/x86/intel/ifs: Add scan test support platform/x86/intel/ifs: Authenticate and copy to secured memory platform/x86/intel/ifs: Check IFS Image sanity platform/x86/intel/ifs: Read IFS firmware image platform/x86/intel/ifs: Add stub driver for In-Field Scan stop_machine: Add stop_core_cpuslocked() for per-core operations x86/msr-index: Define INTEGRITY_CAPABILITIES MSR x86/microcode/intel: Expose collect_cpu_info_early() for IFS ...
2022-05-23Merge tag 'x86_sev_for_v5.19_rc1' of ↵Linus Torvalds1-0/+2
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull AMD SEV-SNP support from Borislav Petkov: "The third AMD confidential computing feature called Secure Nested Paging. Add to confidential guests the necessary memory integrity protection against malicious hypervisor-based attacks like data replay, memory remapping and others, thus achieving a stronger isolation from the hypervisor. At the core of the functionality is a new structure called a reverse map table (RMP) with which the guest has a say in which pages get assigned to it and gets notified when a page which it owns, gets accessed/modified under the covers so that the guest can take an appropriate action. In addition, add support for the whole machinery needed to launch a SNP guest, details of which is properly explained in each patch. And last but not least, the series refactors and improves parts of the previous SEV support so that the new code is accomodated properly and not just bolted on" * tag 'x86_sev_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits) x86/entry: Fixup objtool/ibt validation x86/sev: Mark the code returning to user space as syscall gap x86/sev: Annotate stack change in the #VC handler x86/sev: Remove duplicated assignment to variable info x86/sev: Fix address space sparse warning x86/sev: Get the AP jump table address from secrets page x86/sev: Add missing __init annotations to SEV init routines virt: sevguest: Rename the sevguest dir and files to sev-guest virt: sevguest: Change driver name to reflect generic SEV support x86/boot: Put globals that are accessed early into the .data section x86/boot: Add an efi.h header for the decompressor virt: sevguest: Fix bool function returning negative value virt: sevguest: Fix return value check in alloc_shared_pages() x86/sev-es: Replace open-coded hlt-loop with sev_es_terminate() virt: sevguest: Add documentation for SEV-SNP CPUID Enforcement virt: sevguest: Add support to get extended report virt: sevguest: Add support to derive key virt: Add SEV-SNP guest driver x86/sev: Register SEV-SNP guest request platform device x86/sev: Provide support for SNP guest request NAEs ...
2022-05-21KVM: x86/speculation: Disable Fill buffer clear within guestsPawan Gupta1-0/+6
The enumeration of MD_CLEAR in CPUID(EAX=7,ECX=0).EDX{bit 10} is not an accurate indicator on all CPUs of whether the VERW instruction will overwrite fill buffers. FB_CLEAR enumeration in IA32_ARCH_CAPABILITIES{bit 17} covers the case of CPUs that are not vulnerable to MDS/TAA, indicating that microcode does overwrite fill buffers. Guests running in VMM environments may not be aware of all the capabilities/vulnerabilities of the host CPU. Specifically, a guest may apply MDS/TAA mitigations when a virtual CPU is enumerated as vulnerable to MDS/TAA even when the physical CPU is not. On CPUs that enumerate FB_CLEAR_CTRL the VMM may set FB_CLEAR_DIS to skip overwriting of fill buffers by the VERW instruction. This is done by setting FB_CLEAR_DIS during VMENTER and resetting on VMEXIT. For guests that enumerate FB_CLEAR (explicitly asking for fill buffer clear capability) the VMM will not use FB_CLEAR_DIS. Irrespective of guest state, host overwrites CPU buffers before VMENTER to protect itself from an MMIO capable guest, as part of mitigation for MMIO Stale Data vulnerabilities. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de>
2022-05-21x86/speculation/mmio: Enumerate Processor MMIO Stale Data bugPawan Gupta1-0/+19
Processor MMIO Stale Data is a class of vulnerabilities that may expose data after an MMIO operation. For more details please refer to Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst Add the Processor MMIO Stale Data bug enumeration. A microcode update adds new bits to the MSR IA32_ARCH_CAPABILITIES, define them. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de>
2022-05-12x86/msr-index: Define INTEGRITY_CAPABILITIES MSRTony Luck1-0/+7
The INTEGRITY_CAPABILITIES MSR is enumerated by bit 2 of the CORE_CAPABILITIES MSR. Add defines for the CORE_CAPS enumeration as well as for the integrity MSR. Reviewed-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20220506225410.1652287-3-tony.luck@intel.com Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2022-05-11Merge branch 'v5.18-rc5'Peter Zijlstra1-2/+2
Obtain the new INTEL_FAM6 stuff required. Signed-off-by: Peter Zijlstra <peterz@infradead.org>
2022-05-04x86/msr: Add PerfCntrGlobal* registersSandipan Das1-0/+5
Add MSR definitions that will be used to enable the new AMD Performance Monitoring Version 2 (PerfMonV2) features. These include: * Performance Counter Global Control (PerfCntrGlobalCtl) * Performance Counter Global Status (PerfCntrGlobalStatus) * Performance Counter Global Status Clear (PerfCntrGlobalStatusClr) The new Performance Counter Global Control and Status MSRs provide an interface for enabling or disabling multiple counters at the same time and for testing overflow without probing the individual registers for each PMC. The availability of these registers is indicated through the PerfMonV2 feature bit of CPUID leaf 0x80000022 EAX. Signed-off-by: Sandipan Das <sandipan.das@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/cdc0d8f75bd519848731b5c64d924f5a0619a573.1650515382.git.sandipan.das@amd.com
2022-04-19Merge branch 'turbostat' of ↵Rafael J. Wysocki1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux Pull turbostat changes for 5.19 from Len Brown: "Chen Yu (1): tools/power turbostat: Support thermal throttle count print Dan Merillat (1): tools/power turbostat: fix dump for AMD cpus Len Brown (5): tools/power turbostat: tweak --show and --hide capability tools/power turbostat: fix ICX DRAM power numbers tools/power turbostat: be more useful as non-root tools/power turbostat: No build warnings with -Wextra tools/power turbostat: version 2022.04.16 Sumeet Pawnikar (2): tools/power turbostat: Add Power Limit4 support tools/power turbostat: print power values upto three decimal Zephaniah E. Loss-Cutler-Hull (2): tools/power turbostat: Allow -e for all names. tools/power turbostat: Allow printing header every N iterations" * 'turbostat' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux: tools/power turbostat: version 2022.04.16 tools/power turbostat: No build warnings with -Wextra tools/power turbostat: be more useful as non-root tools/power turbostat: fix ICX DRAM power numbers tools/power turbostat: Support thermal throttle count print tools/power turbostat: Allow printing header every N iterations tools/power turbostat: Allow -e for all names. tools/power turbostat: print power values upto three decimal tools/power turbostat: Add Power Limit4 support tools/power turbostat: fix dump for AMD cpus tools/power turbostat: tweak --show and --hide capability
2022-04-16tools/power turbostat: Add Power Limit4 supportSumeet Pawnikar1-0/+1
Add Power Limit4 support. Signed-off-by: Sumeet Pawnikar <sumeet.r.pawnikar@intel.com> Acked-by: Zhang Rui <rui.zhang@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2022-04-11x86/tsx: Disable TSX development mode at bootPawan Gupta1-2/+2
A microcode update on some Intel processors causes all TSX transactions to always abort by default[*]. Microcode also added functionality to re-enable TSX for development purposes. With this microcode loaded, if tsx=on was passed on the cmdline, and TSX development mode was already enabled before the kernel boot, it may make the system vulnerable to TSX Asynchronous Abort (TAA). To be on safer side, unconditionally disable TSX development mode during boot. If a viable use case appears, this can be revisited later. [*]: Intel TSX Disable Update for Selected Processors, doc ID: 643557 [ bp: Drop unstable web link, massage heavily. ] Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com> Suggested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Tested-by: Neelima Krishnan <neelima.krishnan@intel.com> Cc: <stable@vger.kernel.org> Link: https://lore.kernel.org/r/347bd844da3a333a9793c6687d4e4eb3b2419a3e.1646943780.git.pawan.kumar.gupta@linux.intel.com
2022-04-06x86/mm: Extend cc_attr to include AMD SEV-SNPBrijesh Singh1-0/+2
The CC_ATTR_GUEST_SEV_SNP can be used by the guest to query whether the SNP (Secure Nested Paging) feature is active. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20220307213356.2797205-10-brijesh.singh@amd.com
2022-04-05perf/x86/amd: Add AMD Fam19h Branch Sampling supportStephane Eranian1-0/+4
Add support for the AMD Fam19h 16-deep branch sampling feature as described in the AMD PPR Fam19h Model 01h Revision B1. This is a model specific extension. It is not an architected AMD feature. The Branch Sampling (BRS) operates with a 16-deep saturating buffer in MSR registers. There is no branch type filtering. All control flow changes are captured. BRS relies on specific programming of the core PMU of Fam19h. In particular, the following requirements must be met: - the sampling period be greater than 16 (BRS depth) - the sampling period must use a fixed and not frequency mode BRS interacts with the NMI interrupt as well. Because enabling BRS is expensive, it is only activated after P event occurrences, where P is the desired sampling period. At P occurrences of the event, the counter overflows, the CPU catches the interrupt, activates BRS for 16 branches until it saturates, and then delivers the NMI to the kernel. Between the overflow and the time BRS activates more branches may be executed skewing the period. All along, the sampling event keeps counting. The skid may be attenuated by reducing the sampling period by 16 (subsequent patch). BRS is integrated into perf_events seamlessly via the same PERF_RECORD_BRANCH_STACK sample format. BRS generates perf_branch_entry records in the sampling buffer. No prediction information is supported. The branches are stored in reverse order of execution. The most recent branch is the first entry in each record. No modification to the perf tool is necessary. BRS can be used with any sampling event. However, it is recommended to use the RETIRED_BRANCH_INSTRUCTIONS event because it matches what the BRS captures. $ perf record -b -c 1000037 -e cpu/event=0xc2,name=ret_br_instructions/ test $ perf report -D 56531696056126 0x193c000 [0x1a8]: PERF_RECORD_SAMPLE(IP, 0x2): 18122/18230: 0x401d24 period: 1000037 addr: 0 ... branch stack: nr:16 ..... 0: 0000000000401d24 -> 0000000000401d5a 0 cycles 0 ..... 1: 0000000000401d5c -> 0000000000401d24 0 cycles 0 ..... 2: 0000000000401d22 -> 0000000000401d5c 0 cycles 0 ..... 3: 0000000000401d5e -> 0000000000401d22 0 cycles 0 ..... 4: 0000000000401d20 -> 0000000000401d5e 0 cycles 0 ..... 5: 0000000000401d3e -> 0000000000401d20 0 cycles 0 ..... 6: 0000000000401d42 -> 0000000000401d3e 0 cycles 0 ..... 7: 0000000000401d3c -> 0000000000401d42 0 cycles 0 ..... 8: 0000000000401d44 -> 0000000000401d3c 0 cycles 0 ..... 9: 0000000000401d3a -> 0000000000401d44 0 cycles 0 ..... 10: 0000000000401d46 -> 0000000000401d3a 0 cycles 0 ..... 11: 0000000000401d38 -> 0000000000401d46 0 cycles 0 ..... 12: 0000000000401d48 -> 0000000000401d38 0 cycles 0 ..... 13: 0000000000401d36 -> 0000000000401d48 0 cycles 0 ..... 14: 0000000000401d4a -> 0000000000401d36 0 cycles 0 ..... 15: 0000000000401d34 -> 0000000000401d4a 0 cycles 0 ... thread: test:18230 ...... dso: test Signed-off-by: Stephane Eranian <eranian@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220322221517.2510440-4-eranian@google.com
2022-03-27Merge tag 'x86_core_for_5.18_rc1' of ↵Linus Torvalds1-1/+19
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 CET-IBT (Control-Flow-Integrity) support from Peter Zijlstra: "Add support for Intel CET-IBT, available since Tigerlake (11th gen), which is a coarse grained, hardware based, forward edge Control-Flow-Integrity mechanism where any indirect CALL/JMP must target an ENDBR instruction or suffer #CP. Additionally, since Alderlake (12th gen)/Sapphire-Rapids, speculation is limited to 2 instructions (and typically fewer) on branch targets not starting with ENDBR. CET-IBT also limits speculation of the next sequential instruction after the indirect CALL/JMP [1]. CET-IBT is fundamentally incompatible with retpolines, but provides, as described above, speculation limits itself" [1] https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html * tag 'x86_core_for_5.18_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits) kvm/emulate: Fix SETcc emulation for ENDBR x86/Kconfig: Only allow CONFIG_X86_KERNEL_IBT with ld.lld >= 14.0.0 x86/Kconfig: Only enable CONFIG_CC_HAS_IBT for clang >= 14.0.0 kbuild: Fixup the IBT kbuild changes x86/Kconfig: Do not allow CONFIG_X86_X32_ABI=y with llvm-objcopy x86: Remove toolchain check for X32 ABI capability x86/alternative: Use .ibt_endbr_seal to seal indirect calls objtool: Find unused ENDBR instructions objtool: Validate IBT assumptions objtool: Add IBT/ENDBR decoding objtool: Read the NOENDBR annotation x86: Annotate idtentry_df() x86,objtool: Move the ASM_REACHABLE annotation to objtool.h x86: Annotate call_on_stack() objtool: Rework ASM_REACHABLE x86: Mark __invalid_creds() __noreturn exit: Mark do_group_exit() __noreturn x86: Mark stop_this_cpu() __noreturn objtool: Ignore extra-symbol code objtool: Rename --duplicate to --lto ...
2022-03-22Merge tag 'perf-core-2022-03-21' of ↵Linus Torvalds1-0/+2
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 perf event updates from Ingo Molnar: - Fix address filtering for Intel/PT,ARM/CoreSight - Enable Intel/PEBS format 5 - Allow more fixed-function counters for x86 - Intel/PT: Enable not recording Taken-Not-Taken packets - Add a few branch-types * tag 'perf-core-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf/x86/intel/uncore: Fix the build on !CONFIG_PHYS_ADDR_T_64BIT perf: Add irq and exception return branch types perf/x86/intel/uncore: Make uncore_discovery clean for 64 bit addresses perf/x86/intel/pt: Add a capability and config bit for disabling TNTs perf/x86/intel/pt: Add a capability and config bit for event tracing perf/x86/intel: Increase max number of the fixed counters KVM: x86: use the KVM side max supported fixed counter perf/x86/intel: Enable PEBS format 5 perf/core: Allow kernel address filter when not filtering the kernel perf/x86/intel/pt: Fix address filter config for 32-bit kernel perf/core: Fix address filter parser for multiple filters x86: Share definition of __is_canonical_address() perf/x86/intel/pt: Relax address filter validation
2022-03-18Merge branch 'thermal-hfi'Rafael J. Wysocki1-0/+6
Merge Intel Hardware Feedback Interface (HFI) thermal driver for 5.18-rc1 and update the intel-speed-select utility to support that driver. * thermal-hfi: tools/power/x86/intel-speed-select: v1.12 release tools/power/x86/intel-speed-select: HFI support tools/power/x86/intel-speed-select: OOB daemon mode thermal: intel: hfi: INTEL_HFI_THERMAL depends on NET thermal: netlink: Fix parameter type of thermal_genl_cpu_capability_event() stub thermal: intel: hfi: Notify user space for HFI events thermal: netlink: Add a new event to notify CPU capabilities change thermal: intel: hfi: Enable notification interrupt thermal: intel: hfi: Handle CPU hotplug events thermal: intel: hfi: Minimally initialize the Hardware Feedback Interface x86/cpu: Add definitions for the Intel Hardware Feedback Interface x86/Documentation: Describe the Intel Hardware Feedback Interface
2022-03-15x86/ibt: Add IBT feature, MSR and #CP handlingPeter Zijlstra1-1/+19
The bits required to make the hardware go.. Of note is that, provided the syscall entry points are covered with ENDBR, #CP doesn't need to be an IST because we'll never hit the syscall gap. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/20220308154318.582331711@infradead.org
2022-02-15perf/x86/intel/pt: Add a capability and config bit for disabling TNTsAlexander Shishkin1-0/+1
As of Intel SDM (https://www.intel.com/sdm) version 076, there is a new Intel PT feature called TNT-Disable which is enabled config bit 55. TNT-Disable disables Taken-Not-Taken packets to reduce the tracing overhead, but with the result that exact control flow information is lost. Add a capability and config bit for TNT-Disable. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Adrian Hunter <adrian.hunter@intel.com> Link: https://lore.kernel.org/r/20220126104815.2807416-3-adrian.hunter@intel.com
2022-02-15perf/x86/intel/pt: Add a capability and config bit for event tracingAlexander Shishkin1-0/+1
As of Intel SDM (https://www.intel.com/sdm) version 076, there is a new Intel PT feature called Event Trace which is enabled config bit 31. Event Trace exposes details about asynchronous events such as interrupts and VM-Entry/Exit. Add a capability and config bit for Event Trace. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Adrian Hunter <adrian.hunter@intel.com> Link: https://lore.kernel.org/r/20220126104815.2807416-2-adrian.hunter@intel.com
2022-02-08KVM: x86: SVM: move avic definitions from AMD's spec to svm.hMaxim Levitsky1-0/+1
asm/svm.h is the correct place for all values that are defined in the SVM spec, and that includes AVIC. Also add some values from the spec that were not defined before and will be soon useful. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20220207155447.840194-10-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-03x86/cpu: Add definitions for the Intel Hardware Feedback InterfaceRicardo Neri1-0/+6
Add the CPUID feature bit and the model-specific registers needed to identify and configure the Intel Hardware Feedback Interface. Acked-by: Borislav Petkov <bp@suse.de> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-12-30x86/msr: Add AMD CPPC MSR definitionsHuang Rui1-0/+17
AMD CPPC (Collaborative Processor Performance Control) function uses MSR registers to manage the performance hints. So add the MSR register macro here. Signed-off-by: Huang Rui <ray.huang@amd.com> Acked-by: Borislav Petkov <bp@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-10-26x86/msr-index: Add MSRs for XFDChang S. Bae1-0/+2
XFD introduces two MSRs: - IA32_XFD to enable/disable a feature controlled by XFD - IA32_XFD_ERR to expose to the #NM trap handler which feature was tried to be used for the first time. Both use the same xstate-component bitmap format, used by XCR0. Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20211021225527.10184-14-chang.seok.bae@intel.com
2021-06-28Merge tag 'x86_cpu_for_v5.14_rc1' of ↵Linus Torvalds1-0/+4
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cpu updates from Borislav Petkov: - New AMD models support - Allow MONITOR/MWAIT to be used for C1 state entry on Hygon too - Use the special RAPL CPUID bit to detect the functionality on AMD and Hygon instead of doing family matching. - Add support for new Intel microcode deprecating TSX on some models and do not enable kernel workarounds for those CPUs when TSX transactions always abort, as a result of that microcode update. * tag 'x86_cpu_for_v5.14_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/tsx: Clear CPUID bits when TSX always force aborts x86/events/intel: Do not deploy TSX force abort workaround when TSX is deprecated x86/msr: Define new bits in TSX_FORCE_ABORT MSR perf/x86/rapl: Use CPUID bit on AMD and Hygon parts x86/cstate: Allow ACPI C1 FFH MWAIT use on Hygon systems x86/amd_nb: Add AMD family 19h model 50h PCI ids x86/cpu: Fix core name for Sapphire Rapids
2021-06-15x86/msr: Define new bits in TSX_FORCE_ABORT MSRPawan Gupta1-0/+4
Intel client processors that support the IA32_TSX_FORCE_ABORT MSR related to perf counter interaction [1] received a microcode update that deprecates the Transactional Synchronization Extension (TSX) feature. The bit FORCE_ABORT_RTM now defaults to 1, writes to this bit are ignored. A new bit TSX_CPUID_CLEAR clears the TSX related CPUID bits. The summary of changes to the IA32_TSX_FORCE_ABORT MSR are: Bit 0: FORCE_ABORT_RTM (legacy bit, new default=1) Status bit that indicates if RTM transactions are always aborted. This bit is essentially !SDV_ENABLE_RTM(Bit 2). Writes to this bit are ignored. Bit 1: TSX_CPUID_CLEAR (new bit, default=0) When set, CPUID.HLE = 0 and CPUID.RTM = 0. Bit 2: SDV_ENABLE_RTM (new bit, default=0) When clear, XBEGIN will always abort with EAX code 0. When set, XBEGIN will not be forced to abort (but will always abort in SGX enclaves). This bit is intended to be used on developer systems. If this bit is set, transactional atomicity correctness is not certain. SDV = Software Development Vehicle (SDV), i.e. developer systems. Performance monitoring counter 3 is usable in all cases, regardless of the value of above bits. Add support for a new CPUID bit - CPUID.RTM_ALWAYS_ABORT (CPUID 7.EDX[11]) - to indicate the status of always abort behavior. [1] [ bp: Look for document ID 604224, "Performance Monitoring Impact of Intel Transactional Synchronization Extension Memory". Since there's no way for us to have stable links to documents... ] [ bp: Massage and extend commit message. ] Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Tony Luck <tony.luck@intel.com> Tested-by: Neelima Krishnan <neelima.krishnan@intel.com> Link: https://lkml.kernel.org/r/9add61915b4a4eedad74fbd869107863a28b428e.1623704845.git-series.pawan.kumar.gupta@linux.intel.com
2021-05-10x86/msr: Rename MSR_K8_SYSCFG to MSR_AMD64_SYSCFGBrijesh Singh1-3/+3
The SYSCFG MSR continued being updated beyond the K8 family; drop the K8 name from it. Suggested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Joerg Roedel <jroedel@suse.de> Link: https://lkml.kernel.org/r/20210427111636.1207-4-brijesh.singh@amd.com
2021-04-28Merge tag 'perf-core-2021-04-28' of ↵Linus Torvalds1-0/+3
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf event updates from Ingo Molnar: - Improve Intel uncore PMU support: - Parse uncore 'discovery tables' - a new hardware capability enumeration method introduced on the latest Intel platforms. This table is in a well-defined PCI namespace location and is read via MMIO. It is organized in an rbtree. These uncore tables will allow the discovery of standard counter blocks, but fancier counters still need to be enumerated explicitly. - Add Alder Lake support - Improve IIO stacks to PMON mapping support on Skylake servers - Add Intel Alder Lake PMU support - which requires the introduction of 'hybrid' CPUs and PMUs. Alder Lake is a mix of Golden Cove ('big') and Gracemont ('small' - Atom derived) cores. The CPU-side feature set is entirely symmetrical - but on the PMU side there's core type dependent PMU functionality. - Reduce data loss with CPU level hardware tracing on Intel PT / AUX profiling, by fixing the AUX allocation watermark logic. - Improve ring buffer allocation on NUMA systems - Put 'struct perf_event' into their separate kmem_cache pool - Add support for synchronous signals for select perf events. The immediate motivation is to support low-overhead sampling-based race detection for user-space code. The feature consists of the following main changes: - Add thread-only event inheritance via perf_event_attr::inherit_thread, which limits inheritance of events to CLONE_THREAD. - Add the ability for events to not leak through exec(), via perf_event_attr::remove_on_exec. - Allow the generation of SIGTRAP via perf_event_attr::sigtrap, extend siginfo with an u64 ::si_perf, and add the breakpoint information to ::si_addr and ::si_perf if the event is PERF_TYPE_BREAKPOINT. The siginfo support is adequate for breakpoints right now - but the new field can be used to introduce support for other types of metadata passed over siginfo as well. - Misc fixes, cleanups and smaller updates. * tag 'perf-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits) signal, perf: Add missing TRAP_PERF case in siginfo_layout() signal, perf: Fix siginfo_t by avoiding u64 on 32-bit architectures perf/x86: Allow for 8<num_fixed_counters<16 perf/x86/rapl: Add support for Intel Alder Lake perf/x86/cstate: Add Alder Lake CPU support perf/x86/msr: Add Alder Lake CPU support perf/x86/intel/uncore: Add Alder Lake support perf: Extend PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE perf/x86/intel: Add Alder Lake Hybrid support perf/x86: Support filter_match callback perf/x86/intel: Add attr_update for Hybrid PMUs perf/x86: Add structures for the attributes of Hybrid PMUs perf/x86: Register hybrid PMUs perf/x86: Factor out x86_pmu_show_pmu_cap perf/x86: Remove temporary pmu assignment in event_init perf/x86/intel: Factor out intel_pmu_check_extra_regs perf/x86/intel: Factor out intel_pmu_check_event_constraints perf/x86/intel: Factor out intel_pmu_check_num_counters perf/x86: Hybrid PMU support for extra_regs perf/x86: Hybrid PMU support for event constraints ...
2021-04-26Merge tag 'x86-splitlock-2021-04-26' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 bus lock detection updates from Thomas Gleixner: "Support for enhanced split lock detection: Newer CPUs provide a second mechanism to detect operations with lock prefix which go accross a cache line boundary. Such operations have to take bus lock which causes a system wide performance degradation when these operations happen frequently. The new mechanism is not using the #AC exception. It triggers #DB and is restricted to operations in user space. Kernel side split lock access can only be detected by the #AC based variant. Contrary to the #AC based mechanism the #DB based variant triggers _after_ the instruction was executed. The mechanism is CPUID enumerated and contrary to the #AC version which is based on the magic TEST_CTRL_MSR and model/family based enumeration on the way to become architectural" * tag 'x86-splitlock-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: Documentation/admin-guide: Change doc for split_lock_detect parameter x86/traps: Handle #DB for bus lock x86/cpufeatures: Enumerate #DB for bus lock detection
2021-04-19perf/x86/intel: Hybrid PMU support for perf capabilitiesKan Liang1-0/+3
Some platforms, e.g. Alder Lake, have hybrid architecture. Although most PMU capabilities are the same, there are still some unique PMU capabilities for different hybrid PMUs. Perf should register a dedicated pmu for each hybrid PMU. Add a new struct x86_hybrid_pmu, which saves the dedicated pmu and capabilities for each hybrid PMU. The architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicates the architecture features which are available on all hybrid PMUs. The architecture features are stored in the global x86_pmu.intel_cap. For Alder Lake, the model-specific features are perf metrics and PEBS-via-PT. The corresponding bits of the global x86_pmu.intel_cap should be 0 for these two features. Perf should not use the global intel_cap to check the features on a hybrid system. Add a dedicated intel_cap in the x86_hybrid_pmu to store the model-specific capabilities. Use the dedicated intel_cap to replace the global intel_cap for thse two features. The dedicated intel_cap will be set in the following "Add Alder Lake Hybrid support" patch. Add is_hybrid() to distinguish a hybrid system. ADL may have an alternative configuration. With that configuration, the X86_FEATURE_HYBRID_CPU is not set. Perf cannot rely on the feature bit. Add a new static_key_false, perf_is_hybrid, to indicate a hybrid system. It will be assigned in the following "Add Alder Lake Hybrid support" patch as well. Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/1618237865-33448-5-git-send-email-kan.liang@linux.intel.com
2021-03-28x86/traps: Handle #DB for bus lockFenghua Yu1-0/+1
Bus locks degrade performance for the whole system, not just for the CPU that requested the bus lock. Two CPU features "#AC for split lock" and "#DB for bus lock" provide hooks so that the operating system may choose one of several mitigation strategies. #AC for split lock is already implemented. Add code to use the #DB for bus lock feature to cover additional situations with new options to mitigate. split_lock_detect= #AC for split lock #DB for bus lock off Do nothing Do nothing warn Kernel OOPs Warn once per task and Warn once per task and and continues to run. disable future checking When both features are supported, warn in #AC fatal Kernel OOPs Send SIGBUS to user. Send SIGBUS to user When both features are supported, fatal in #AC ratelimit:N Do nothing Limit bus lock rate to N per second in the current non-root user. Default option is "warn". Hardware only generates #DB for bus lock detect when CPL>0 to avoid nested #DB from multiple bus locks while the first #DB is being handled. So no need to handle #DB for bus lock detected in the kernel. #DB for bus lock is enabled by bus lock detection bit 2 in DEBUGCTL MSR while #AC for split lock is enabled by split lock detection bit 29 in TEST_CTRL MSR. Both breakpoint and bus lock in the same instruction can trigger one #DB. The bus lock is handled before the breakpoint in the #DB handler. Delivery of #DB for bus lock in userspace clears DR6[11], which is set by the #DB handler right after reading DR6. Signed-off-by: Fenghua Yu <fenghua.yu@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Tony Luck <tony.luck@intel.com> Link: https://lore.kernel.org/r/20210322135325.682257-3-fenghua.yu@intel.com
2021-03-08x86: Remove duplicate TSC DEADLINE MSR definitionsDave Hansen1-2/+0
There are two definitions for the TSC deadline MSR in msr-index.h, one with an underscore and one without. Axe one of them and move all the references over to the other one. [ bp: Fixup the MSR define in handle_fastpath_set_msr_irqoff() too. ] Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20200305174706.0D6B8EE4@viggo.jf.intel.com
2020-12-20Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds1-0/+1
Pull KVM updates from Paolo Bonzini: "Much x86 work was pushed out to 5.12, but ARM more than made up for it. ARM: - PSCI relay at EL2 when "protected KVM" is enabled - New exception injection code - Simplification of AArch32 system register handling - Fix PMU accesses when no PMU is enabled - Expose CSV3 on non-Meltdown hosts - Cache hierarchy discovery fixes - PV steal-time cleanups - Allow function pointers at EL2 - Various host EL2 entry cleanups - Simplification of the EL2 vector allocation s390: - memcg accouting for s390 specific parts of kvm and gmap - selftest for diag318 - new kvm_stat for when async_pf falls back to sync x86: - Tracepoints for the new pagetable code from 5.10 - Catch VFIO and KVM irqfd events before userspace - Reporting dirty pages to userspace with a ring buffer - SEV-ES host support - Nested VMX support for wait-for-SIPI activity state - New feature flag (AVX512 FP16) - New system ioctl to report Hyper-V-compatible paravirtualization features Generic: - Selftest improvements" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits) KVM: SVM: fix 32-bit compilation KVM: SVM: Add AP_JUMP_TABLE support in prep for AP booting KVM: SVM: Provide support to launch and run an SEV-ES guest KVM: SVM: Provide an updated VMRUN invocation for SEV-ES guests KVM: SVM: Provide support for SEV-ES vCPU loading KVM: SVM: Provide support for SEV-ES vCPU creation/loading KVM: SVM: Update ASID allocation to support SEV-ES guests KVM: SVM: Set the encryption mask for the SVM host save area KVM: SVM: Add NMI support for an SEV-ES guest KVM: SVM: Guest FPU state save/restore not needed for SEV-ES guest KVM: SVM: Do not report support for SMM for an SEV-ES guest KVM: x86: Update __get_sregs() / __set_sregs() to support SEV-ES KVM: SVM: Add support for CR8 write traps for an SEV-ES guest KVM: SVM: Add support for CR4 write traps for an SEV-ES guest KVM: SVM: Add support for CR0 write traps for an SEV-ES guest KVM: SVM: Add support for EFER write traps for an SEV-ES guest KVM: SVM: Support string IO operations for an SEV-ES guest KVM: SVM: Support MMIO for an SEV-ES guest KVM: SVM: Create trace events for VMGEXIT MSR protocol processing KVM: SVM: Create trace events for VMGEXIT processing ...
2020-12-15Merge tag 'pm-5.11-rc1' of ↵Linus Torvalds1-1/+2
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management updates from Rafael Wysocki: "These update cpufreq (core and drivers), cpuidle (polling state implementation and the PSCI driver), the OPP (operating performance points) framework, devfreq (core and drivers), the power capping RAPL (Running Average Power Limit) driver, the Energy Model support, the generic power domains (genpd) framework, the ACPI device power management, the core system-wide suspend code and power management utilities. Specifics: - Use local_clock() instead of jiffies in the cpufreq statistics to improve accuracy (Viresh Kumar). - Fix up OPP usage in the cpufreq-dt and qcom-cpufreq-nvmem cpufreq drivers (Viresh Kumar). - Clean up the cpufreq core, the intel_pstate driver and the schedutil cpufreq governor (Rafael Wysocki). - Fix up error code paths in the sti-cpufreq and mediatek cpufreq drivers (Yangtao Li, Qinglang Miao). - Fix cpufreq_online() to return error codes instead of success (0) in all cases when it fails (Wang ShaoBo). - Add mt8167 support to the mediatek cpufreq driver and blacklist mt8516 in the cpufreq-dt-platdev driver (Fabien Parent). - Modify the tegra194 cpufreq driver to always return values from the frequency table as the current frequency and clean up that driver (Sumit Gupta, Jon Hunter). - Modify the arm_scmi cpufreq driver to allow it to discover the power scale present in the performance protocol and provide this information to the Energy Model (Lukasz Luba). - Add missing MODULE_DEVICE_TABLE to several cpufreq drivers (Pali Rohár). - Clean up the CPPC cpufreq driver (Ionela Voinescu). - Fix NVMEM_IMX_OCOTP dependency in the imx cpufreq driver (Arnd Bergmann). - Rework the poling interval selection for the polling state in cpuidle (Mel Gorman). - Enable suspend-to-idle for PSCI OSI mode in the PSCI cpuidle driver (Ulf Hansson). - Modify the OPP framework to support empty (node-less) OPP tables in DT for passing dependency information (Nicola Mazzucato). - Fix potential lockdep issue in the OPP core and clean up the OPP core (Viresh Kumar). - Modify dev_pm_opp_put_regulators() to accept a NULL argument and update its users accordingly (Viresh Kumar). - Add frequency changes tracepoint to devfreq (Matthias Kaehlcke). - Add support for governor feature flags to devfreq, make devfreq sysfs file permissions depend on the governor and clean up the devfreq core (Chanwoo Choi). - Clean up the tegra20 devfreq driver and deprecate it to allow another driver based on EMC_STAT to be used instead of it (Dmitry Osipenko). - Add interconnect support to the tegra30 devfreq driver, allow it to take the interconnect and OPP information from DT and clean it up (Dmitry Osipenko). - Add interconnect support to the exynos-bus devfreq driver along with interconnect properties documentation (Sylwester Nawrocki). - Add suport for AMD Fam17h and Fam19h processors to the RAPL power capping driver (Victor Ding, Kim Phillips). - Fix handling of overly long constraint names in the powercap framework (Lukasz Luba). - Fix the wakeup configuration handling for bridges in the ACPI device power management core (Rafael Wysocki). - Add support for using an abstract scale for power units in the Energy Model (EM) and document it (Lukasz Luba). - Add em_cpu_energy() micro-optimization to the EM (Pavankumar Kondeti). - Modify the generic power domains (genpd) framwework to support suspend-to-idle (Ulf Hansson). - Fix creation of debugfs nodes in genpd (Thierry Strudel). - Clean up genpd (Lina Iyer). - Clean up the core system-wide suspend code and make it print driver flags for devices with debug enabled (Alex Shi, Patrice Chotard, Chen Yu). - Modify the ACPI system reboot code to make it prepare for system power off to avoid confusing the platform firmware (Kai-Heng Feng). - Update the pm-graph (multiple changes, mostly usability-related) and cpupower (online and offline CPU information support) PM utilities (Todd Brandt, Brahadambal Srinivasan)" * tag 'pm-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (86 commits) cpufreq: Fix cpufreq_online() return value on errors cpufreq: Fix up several kerneldoc comments cpufreq: stats: Use local_clock() instead of jiffies cpufreq: schedutil: Simplify sugov_update_next_freq() cpufreq: intel_pstate: Simplify intel_cpufreq_update_pstate() PM: domains: create debugfs nodes when adding power domains opp: of: Allow empty opp-table with opp-shared dt-bindings: opp: Allow empty OPP tables media: venus: dev_pm_opp_put_*() accepts NULL argument drm/panfrost: dev_pm_opp_put_*() accepts NULL argument drm/lima: dev_pm_opp_put_*() accepts NULL argument PM / devfreq: exynos: dev_pm_opp_put_*() accepts NULL argument cpufreq: qcom-cpufreq-nvmem: dev_pm_opp_put_*() accepts NULL argument cpufreq: dt: dev_pm_opp_put_regulators() accepts NULL argument opp: Allow dev_pm_opp_put_*() APIs to accept NULL opp_table opp: Don't create an OPP table from dev_pm_opp_get_opp_table() cpufreq: dt: Don't (ab)use dev_pm_opp_get_opp_table() to create OPP table opp: Reduce the size of critical section in _opp_kref_release() PM / EM: Micro optimization in em_cpu_energy cpufreq: arm_scmi: Discover the power scale in performance protocol ...
2020-12-14Merge tag 'x86_sgx_for_v5.11' of ↵Linus Torvalds1-0/+8
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 SGC support from Borislav Petkov: "Intel Software Guard eXtensions enablement. This has been long in the making, we were one revision number short of 42. :) Intel SGX is new hardware functionality that can be used by applications to populate protected regions of user code and data called enclaves. Once activated, the new hardware protects enclave code and data from outside access and modification. Enclaves provide a place to store secrets and process data with those secrets. SGX has been used, for example, to decrypt video without exposing the decryption keys to nosy debuggers that might be used to subvert DRM. Software has generally been rewritten specifically to run in enclaves, but there are also projects that try to run limited unmodified software in enclaves. Most of the functionality is concentrated into arch/x86/kernel/cpu/sgx/ except the addition of a new mprotect() hook to control enclave page permissions and support for vDSO exceptions fixup which will is used by SGX enclaves. All this work by Sean Christopherson, Jarkko Sakkinen and many others" * tag 'x86_sgx_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (30 commits) x86/sgx: Return -EINVAL on a zero length buffer in sgx_ioc_enclave_add_pages() x86/sgx: Fix a typo in kernel-doc markup x86/sgx: Fix sgx_ioc_enclave_provision() kernel-doc comment x86/sgx: Return -ERESTARTSYS in sgx_ioc_enclave_add_pages() selftests/sgx: Use a statically generated 3072-bit RSA key x86/sgx: Clarify 'laundry_list' locking x86/sgx: Update MAINTAINERS Documentation/x86: Document SGX kernel architecture x86/sgx: Add ptrace() support for the SGX driver x86/sgx: Add a page reclaimer selftests/x86: Add a selftest for SGX x86/vdso: Implement a vDSO for Intel SGX enclave call x86/traps: Attempt to fixup exceptions in vDSO before signaling x86/fault: Add a helper function to sanitize error code x86/vdso: Add support for exception fixup in vDSO functions x86/sgx: Add SGX_IOC_ENCLAVE_PROVISION x86/sgx: Add SGX_IOC_ENCLAVE_INIT x86/sgx: Add SGX_IOC_ENCLAVE_ADD_PAGES x86/sgx: Add SGX_IOC_ENCLAVE_CREATE x86/sgx: Add an SGX misc driver interface ...
2020-12-14x86/cpu: Add VM page flush MSR availablility as a CPUID featureTom Lendacky1-0/+1
On systems that do not have hardware enforced cache coherency between encrypted and unencrypted mappings of the same physical page, the hypervisor can use the VM page flush MSR (0xc001011e) to flush the cache contents of an SEV guest page. When a small number of pages are being flushed, this can be used in place of issuing a WBINVD across all CPUs. CPUID 0x8000001f_eax[2] is used to determine if the VM page flush MSR is available. Add a CPUID feature to indicate it is supported and define the MSR. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <f1966379e31f9b208db5257509c4a089a87d33d0.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-17x86/{cpufeatures,msr}: Add Intel SGX Launch Control hardware bitsSean Christopherson1-0/+7
The SGX Launch Control hardware helps restrict which enclaves the hardware will run. Launch control is intended to restrict what software can run with enclave protections, which helps protect the overall system from bad enclaves. For the kernel's purposes, there are effectively two modes in which the launch control hardware can operate: rigid and flexible. In its rigid mode, an entity other than the kernel has ultimate authority over which enclaves can be run (firmware, Intel, etc...). In its flexible mode, the kernel has ultimate authority over which enclaves can run. Enable X86_FEATURE_SGX_LC to enumerate when the CPU supports SGX Launch Control in general. Add MSR_IA32_SGXLEPUBKEYHASH{0, 1, 2, 3}, which when combined contain a SHA256 hash of a 3072-bit RSA public key. The hardware allows SGX enclaves signed with this public key to initialize and run [*]. Enclaves not signed with this key can not initialize and run. Add FEAT_CTL_SGX_LC_ENABLED, which informs whether the SGXLEPUBKEYHASH MSRs can be written by the kernel. If the MSRs do not exist or are read-only, the launch control hardware is operating in rigid mode. Linux does not and will not support creating enclaves when hardware is configured in rigid mode because it takes away the authority for launch decisions from the kernel. Note, this does not preclude KVM from virtualizing/exposing SGX to a KVM guest when launch control hardware is operating in rigid mode. [*] Intel SDM: 38.1.4 Intel SGX Launch Control Configuration Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-5-jarkko@kernel.org
2020-11-17x86/cpufeatures: Add Intel SGX hardware bitsSean Christopherson1-0/+1
Populate X86_FEATURE_SGX feature from CPUID and tie it to the Kconfig option with disabled-features.h. IA32_FEATURE_CONTROL.SGX_ENABLE must be examined in addition to the CPUID bits to enable full SGX support. The BIOS must both set this bit and lock IA32_FEATURE_CONTROL for SGX to be supported (Intel SDM section 36.7.1). The setting or clearing of this bit has no impact on the CPUID bits above, which is why it needs to be detected separately. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-4-jarkko@kernel.org
2020-11-10powercap: Add AMD Fam17h RAPL supportVictor Ding1-0/+1
Enable AMD Fam17h RAPL support for the power capping framework. The support is as per AMD Fam17h Model31h (Zen2) and model 00-ffh (Zen1) PPR. Tested by comparing the results of following two sysfs entries and the values directly read from corresponding MSRs via /dev/cpu/[x]/msr: /sys/class/powercap/intel-rapl/intel-rapl:0/energy_uj /sys/class/powercap/intel-rapl/intel-rapl:0/intel-rapl:0:0/energy_uj Signed-off-by: Victor Ding <victording@google.com> Acked-by: Kim Phillips <kim.phillips@amd.com> [ rjw: Changelog edits ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-11-10x86/msr-index: sort AMD RAPL MSRs by addressVictor Ding1-1/+1
MSRs in the rest of this file are sorted by their addresses; fixing the two outliers. No functional changes. Signed-off-by: Victor Ding <victording@google.com> Acked-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-11-02x86/mce: Enable additional error logging on certain Intel CPUsTony Luck1-0/+1
The Xeon versions of Sandy Bridge, Ivy Bridge and Haswell support an optional additional error logging mode which is enabled by an MSR. Previously, this mode was enabled from the mcelog(8) tool via /dev/cpu, but userspace should not be poking at MSRs. So move the enabling into the kernel. [ bp: Correct the explanation why this is done. ] Suggested-by: Boris Petkov <bp@alien8.de> Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20201030190807.GA13884@agluck-desk2.amr.corp.intel.com
2020-10-14Merge tag 'x86_seves_for_v5.10' of ↵Linus Torvalds1-0/+3
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 SEV-ES support from Borislav Petkov: "SEV-ES enhances the current guest memory encryption support called SEV by also encrypting the guest register state, making the registers inaccessible to the hypervisor by en-/decrypting them on world switches. Thus, it adds additional protection to Linux guests against exfiltration, control flow and rollback attacks. With SEV-ES, the guest is in full control of what registers the hypervisor can access. This is provided by a guest-host exchange mechanism based on a new exception vector called VMM Communication Exception (#VC), a new instruction called VMGEXIT and a shared Guest-Host Communication Block which is a decrypted page shared between the guest and the hypervisor. Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest so in order for that exception mechanism to work, the early x86 init code needed to be made able to handle exceptions, which, in itself, brings a bunch of very nice cleanups and improvements to the early boot code like an early page fault handler, allowing for on-demand building of the identity mapping. With that, !KASLR configurations do not use the EFI page table anymore but switch to a kernel-controlled one. The main part of this series adds the support for that new exchange mechanism. The goal has been to keep this as much as possibly separate from the core x86 code by concentrating the machinery in two SEV-ES-specific files: arch/x86/kernel/sev-es-shared.c arch/x86/kernel/sev-es.c Other interaction with core x86 code has been kept at minimum and behind static keys to minimize the performance impact on !SEV-ES setups. Work by Joerg Roedel and Thomas Lendacky and others" * tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (73 commits) x86/sev-es: Use GHCB accessor for setting the MMIO scratch buffer x86/sev-es: Check required CPU features for SEV-ES x86/efi: Add GHCB mappings when SEV-ES is active x86/sev-es: Handle NMI State x86/sev-es: Support CPU offline/online x86/head/64: Don't call verify_cpu() on starting APs x86/smpboot: Load TSS and getcpu GDT entry before loading IDT x86/realmode: Setup AP jump table x86/realmode: Add SEV-ES specific trampoline entry point x86/vmware: Add VMware-specific handling for VMMCALL under SEV-ES x86/kvm: Add KVM-specific VMMCALL handling under SEV-ES x86/paravirt: Allow hypervisor-specific VMMCALL handling under SEV-ES x86/sev-es: Handle #DB Events x86/sev-es: Handle #AC Events x86/sev-es: Handle VMMCALL Events x86/sev-es: Handle MWAIT/MWAITX Events x86/sev-es: Handle MONITOR/MONITORX Events x86/sev-es: Handle INVD Events x86/sev-es: Handle RDPMC Events x86/sev-es: Handle RDTSC(P) Events ...