diff options
| author | Linus Torvalds <torvalds@linux-foundation.org> | 2024-11-19 16:35:06 -0800 |
|---|---|---|
| committer | Linus Torvalds <torvalds@linux-foundation.org> | 2024-11-19 16:35:06 -0800 |
| commit | bf9aa14fc523d2763fc9a10672a709224e8fcaf4 (patch) | |
| tree | 7d9c0cad473dc27a0c9bb09c561511df9481b066 /kernel/time/sleep_timeout.c | |
| parent | Merge tag 'timers-vdso-2024-11-18' of git://git.kernel.org/pub/scm/linux/kern... (diff) | |
| parent | posix-timers: Fix spurious warning on double enqueue versus do_exit() (diff) | |
| download | linux-bf9aa14fc523d2763fc9a10672a709224e8fcaf4.tar.gz linux-bf9aa14fc523d2763fc9a10672a709224e8fcaf4.zip | |
Merge tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"A rather large update for timekeeping and timers:
- The final step to get rid of auto-rearming posix-timers
posix-timers are currently auto-rearmed by the kernel when the
signal of the timer is ignored so that the timer signal can be
delivered once the corresponding signal is unignored.
This requires to throttle the timer to prevent a DoS by small
intervals and keeps the system pointlessly out of low power states
for no value. This is a long standing non-trivial problem due to
the lock order of posix-timer lock and the sighand lock along with
life time issues as the timer and the sigqueue have different life
time rules.
Cure this by:
- Embedding the sigqueue into the timer struct to have the same
life time rules. Aside of that this also avoids the lookup of
the timer in the signal delivery and rearm path as it's just a
always valid container_of() now.
- Queuing ignored timer signals onto a seperate ignored list.
- Moving queued timer signals onto the ignored list when the
signal is switched to SIG_IGN before it could be delivered.
- Walking the ignored list when SIG_IGN is lifted and requeue the
signals to the actual signal lists. This allows the signal
delivery code to rearm the timer.
This also required to consolidate the signal delivery rules so they
are consistent across all situations. With that all self test
scenarios finally succeed.
- Core infrastructure for VFS multigrain timestamping
This is required to allow the kernel to use coarse grained time
stamps by default and switch to fine grained time stamps when inode
attributes are actively observed via getattr().
These changes have been provided to the VFS tree as well, so that
the VFS specific infrastructure could be built on top.
- Cleanup and consolidation of the sleep() infrastructure
- Move all sleep and timeout functions into one file
- Rework udelay() and ndelay() into proper documented inline
functions and replace the hardcoded magic numbers by proper
defines.
- Rework the fsleep() implementation to take the reality of the
timer wheel granularity on different HZ values into account.
Right now the boundaries are hard coded time ranges which fail
to provide the requested accuracy on different HZ settings.
- Update documentation for all sleep/timeout related functions
and fix up stale documentation links all over the place
- Fixup a few usage sites
- Rework of timekeeping and adjtimex(2) to prepare for multiple PTP
clocks
A system can have multiple PTP clocks which are participating in
seperate and independent PTP clock domains. So far the kernel only
considers the PTP clock which is based on CLOCK TAI relevant as
that's the clock which drives the timekeeping adjustments via the
various user space daemons through adjtimex(2).
The non TAI based clock domains are accessible via the file
descriptor based posix clocks, but their usability is very limited.
They can't be accessed fast as they always go all the way out to
the hardware and they cannot be utilized in the kernel itself.
As Time Sensitive Networking (TSN) gains traction it is required to
provide fast user and kernel space access to these clocks.
The approach taken is to utilize the timekeeping and adjtimex(2)
infrastructure to provide this access in a similar way how the
kernel provides access to clock MONOTONIC, REALTIME etc.
Instead of creating a duplicated infrastructure this rework
converts timekeeping and adjtimex(2) into generic functionality
which operates on pointers to data structures instead of using
static variables.
This allows to provide time accessors and adjtimex(2) functionality
for the independent PTP clocks in a subsequent step.
- Consolidate hrtimer initialization
hrtimers are set up by initializing the data structure and then
seperately setting the callback function for historical reasons.
That's an extra unnecessary step and makes Rust support less
straight forward than it should be.
Provide a new set of hrtimer_setup*() functions and convert the
core code and a few usage sites of the less frequently used
interfaces over.
The bulk of the htimer_init() to hrtimer_setup() conversion is
already prepared and scheduled for the next merge window.
- Drivers:
- Ensure that the global timekeeping clocksource is utilizing the
cluster 0 timer on MIPS multi-cluster systems.
Otherwise CPUs on different clusters use their cluster specific
clocksource which is not guaranteed to be synchronized with
other clusters.
- Mostly boring cleanups, fixes, improvements and code movement"
* tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (140 commits)
posix-timers: Fix spurious warning on double enqueue versus do_exit()
clocksource/drivers/arm_arch_timer: Use of_property_present() for non-boolean properties
clocksource/drivers/gpx: Remove redundant casts
clocksource/drivers/timer-ti-dm: Fix child node refcount handling
dt-bindings: timer: actions,owl-timer: convert to YAML
clocksource/drivers/ralink: Add Ralink System Tick Counter driver
clocksource/drivers/mips-gic-timer: Always use cluster 0 counter as clocksource
clocksource/drivers/timer-ti-dm: Don't fail probe if int not found
clocksource/drivers:sp804: Make user selectable
clocksource/drivers/dw_apb: Remove unused dw_apb_clockevent functions
hrtimers: Delete hrtimer_init_on_stack()
alarmtimer: Switch to use hrtimer_setup() and hrtimer_setup_on_stack()
io_uring: Switch to use hrtimer_setup_on_stack()
sched/idle: Switch to use hrtimer_setup_on_stack()
hrtimers: Delete hrtimer_init_sleeper_on_stack()
wait: Switch to use hrtimer_setup_sleeper_on_stack()
timers: Switch to use hrtimer_setup_sleeper_on_stack()
net: pktgen: Switch to use hrtimer_setup_sleeper_on_stack()
futex: Switch to use hrtimer_setup_sleeper_on_stack()
fs/aio: Switch to use hrtimer_setup_sleeper_on_stack()
...
Diffstat (limited to 'kernel/time/sleep_timeout.c')
| -rw-r--r-- | kernel/time/sleep_timeout.c | 377 |
1 files changed, 377 insertions, 0 deletions
diff --git a/kernel/time/sleep_timeout.c b/kernel/time/sleep_timeout.c new file mode 100644 index 000000000000..dfe939f6e4ec --- /dev/null +++ b/kernel/time/sleep_timeout.c @@ -0,0 +1,377 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Kernel internal schedule timeout and sleeping functions + */ + +#include <linux/delay.h> +#include <linux/jiffies.h> +#include <linux/timer.h> +#include <linux/sched/signal.h> +#include <linux/sched/debug.h> + +#include "tick-internal.h" + +/* + * Since schedule_timeout()'s timer is defined on the stack, it must store + * the target task on the stack as well. + */ +struct process_timer { + struct timer_list timer; + struct task_struct *task; +}; + +static void process_timeout(struct timer_list *t) +{ + struct process_timer *timeout = from_timer(timeout, t, timer); + + wake_up_process(timeout->task); +} + +/** + * schedule_timeout - sleep until timeout + * @timeout: timeout value in jiffies + * + * Make the current task sleep until @timeout jiffies have elapsed. + * The function behavior depends on the current task state + * (see also set_current_state() description): + * + * %TASK_RUNNING - the scheduler is called, but the task does not sleep + * at all. That happens because sched_submit_work() does nothing for + * tasks in %TASK_RUNNING state. + * + * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to + * pass before the routine returns unless the current task is explicitly + * woken up, (e.g. by wake_up_process()). + * + * %TASK_INTERRUPTIBLE - the routine may return early if a signal is + * delivered to the current task or the current task is explicitly woken + * up. + * + * The current task state is guaranteed to be %TASK_RUNNING when this + * routine returns. + * + * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule + * the CPU away without a bound on the timeout. In this case the return + * value will be %MAX_SCHEDULE_TIMEOUT. + * + * Returns: 0 when the timer has expired otherwise the remaining time in + * jiffies will be returned. In all cases the return value is guaranteed + * to be non-negative. + */ +signed long __sched schedule_timeout(signed long timeout) +{ + struct process_timer timer; + unsigned long expire; + + switch (timeout) { + case MAX_SCHEDULE_TIMEOUT: + /* + * These two special cases are useful to be comfortable + * in the caller. Nothing more. We could take + * MAX_SCHEDULE_TIMEOUT from one of the negative value + * but I' d like to return a valid offset (>=0) to allow + * the caller to do everything it want with the retval. + */ + schedule(); + goto out; + default: + /* + * Another bit of PARANOID. Note that the retval will be + * 0 since no piece of kernel is supposed to do a check + * for a negative retval of schedule_timeout() (since it + * should never happens anyway). You just have the printk() + * that will tell you if something is gone wrong and where. + */ + if (timeout < 0) { + pr_err("%s: wrong timeout value %lx\n", __func__, timeout); + dump_stack(); + __set_current_state(TASK_RUNNING); + goto out; + } + } + + expire = timeout + jiffies; + + timer.task = current; + timer_setup_on_stack(&timer.timer, process_timeout, 0); + timer.timer.expires = expire; + add_timer(&timer.timer); + schedule(); + del_timer_sync(&timer.timer); + + /* Remove the timer from the object tracker */ + destroy_timer_on_stack(&timer.timer); + + timeout = expire - jiffies; + + out: + return timeout < 0 ? 0 : timeout; +} +EXPORT_SYMBOL(schedule_timeout); + +/* + * __set_current_state() can be used in schedule_timeout_*() functions, because + * schedule_timeout() calls schedule() unconditionally. + */ + +/** + * schedule_timeout_interruptible - sleep until timeout (interruptible) + * @timeout: timeout value in jiffies + * + * See schedule_timeout() for details. + * + * Task state is set to TASK_INTERRUPTIBLE before starting the timeout. + */ +signed long __sched schedule_timeout_interruptible(signed long timeout) +{ + __set_current_state(TASK_INTERRUPTIBLE); + return schedule_timeout(timeout); +} +EXPORT_SYMBOL(schedule_timeout_interruptible); + +/** + * schedule_timeout_killable - sleep until timeout (killable) + * @timeout: timeout value in jiffies + * + * See schedule_timeout() for details. + * + * Task state is set to TASK_KILLABLE before starting the timeout. + */ +signed long __sched schedule_timeout_killable(signed long timeout) +{ + __set_current_state(TASK_KILLABLE); + return schedule_timeout(timeout); +} +EXPORT_SYMBOL(schedule_timeout_killable); + +/** + * schedule_timeout_uninterruptible - sleep until timeout (uninterruptible) + * @timeout: timeout value in jiffies + * + * See schedule_timeout() for details. + * + * Task state is set to TASK_UNINTERRUPTIBLE before starting the timeout. + */ +signed long __sched schedule_timeout_uninterruptible(signed long timeout) +{ + __set_current_state(TASK_UNINTERRUPTIBLE); + return schedule_timeout(timeout); +} +EXPORT_SYMBOL(schedule_timeout_uninterruptible); + +/** + * schedule_timeout_idle - sleep until timeout (idle) + * @timeout: timeout value in jiffies + * + * See schedule_timeout() for details. + * + * Task state is set to TASK_IDLE before starting the timeout. It is similar to + * schedule_timeout_uninterruptible(), except this task will not contribute to + * load average. + */ +signed long __sched schedule_timeout_idle(signed long timeout) +{ + __set_current_state(TASK_IDLE); + return schedule_timeout(timeout); +} +EXPORT_SYMBOL(schedule_timeout_idle); + +/** + * schedule_hrtimeout_range_clock - sleep until timeout + * @expires: timeout value (ktime_t) + * @delta: slack in expires timeout (ktime_t) + * @mode: timer mode + * @clock_id: timer clock to be used + * + * Details are explained in schedule_hrtimeout_range() function description as + * this function is commonly used. + */ +int __sched schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, + const enum hrtimer_mode mode, clockid_t clock_id) +{ + struct hrtimer_sleeper t; + + /* + * Optimize when a zero timeout value is given. It does not + * matter whether this is an absolute or a relative time. + */ + if (expires && *expires == 0) { + __set_current_state(TASK_RUNNING); + return 0; + } + + /* + * A NULL parameter means "infinite" + */ + if (!expires) { + schedule(); + return -EINTR; + } + + hrtimer_setup_sleeper_on_stack(&t, clock_id, mode); + hrtimer_set_expires_range_ns(&t.timer, *expires, delta); + hrtimer_sleeper_start_expires(&t, mode); + + if (likely(t.task)) + schedule(); + + hrtimer_cancel(&t.timer); + destroy_hrtimer_on_stack(&t.timer); + + __set_current_state(TASK_RUNNING); + + return !t.task ? 0 : -EINTR; +} +EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock); + +/** + * schedule_hrtimeout_range - sleep until timeout + * @expires: timeout value (ktime_t) + * @delta: slack in expires timeout (ktime_t) + * @mode: timer mode + * + * Make the current task sleep until the given expiry time has + * elapsed. The routine will return immediately unless + * the current task state has been set (see set_current_state()). + * + * The @delta argument gives the kernel the freedom to schedule the + * actual wakeup to a time that is both power and performance friendly + * for regular (non RT/DL) tasks. + * The kernel give the normal best effort behavior for "@expires+@delta", + * but may decide to fire the timer earlier, but no earlier than @expires. + * + * You can set the task state as follows - + * + * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to + * pass before the routine returns unless the current task is explicitly + * woken up, (e.g. by wake_up_process()). + * + * %TASK_INTERRUPTIBLE - the routine may return early if a signal is + * delivered to the current task or the current task is explicitly woken + * up. + * + * The current task state is guaranteed to be TASK_RUNNING when this + * routine returns. + * + * Returns: 0 when the timer has expired. If the task was woken before the + * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or + * by an explicit wakeup, it returns -EINTR. + */ +int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, + const enum hrtimer_mode mode) +{ + return schedule_hrtimeout_range_clock(expires, delta, mode, + CLOCK_MONOTONIC); +} +EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); + +/** + * schedule_hrtimeout - sleep until timeout + * @expires: timeout value (ktime_t) + * @mode: timer mode + * + * See schedule_hrtimeout_range() for details. @delta argument of + * schedule_hrtimeout_range() is set to 0 and has therefore no impact. + */ +int __sched schedule_hrtimeout(ktime_t *expires, const enum hrtimer_mode mode) +{ + return schedule_hrtimeout_range(expires, 0, mode); +} +EXPORT_SYMBOL_GPL(schedule_hrtimeout); + +/** + * msleep - sleep safely even with waitqueue interruptions + * @msecs: Requested sleep duration in milliseconds + * + * msleep() uses jiffy based timeouts for the sleep duration. Because of the + * design of the timer wheel, the maximum additional percentage delay (slack) is + * 12.5%. This is only valid for timers which will end up in level 1 or a higher + * level of the timer wheel. For explanation of those 12.5% please check the + * detailed description about the basics of the timer wheel. + * + * The slack of timers which will end up in level 0 depends on sleep duration + * (msecs) and HZ configuration and can be calculated in the following way (with + * the timer wheel design restriction that the slack is not less than 12.5%): + * + * ``slack = MSECS_PER_TICK / msecs`` + * + * When the allowed slack of the callsite is known, the calculation could be + * turned around to find the minimal allowed sleep duration to meet the + * constraints. For example: + * + * * ``HZ=1000`` with ``slack=25%``: ``MSECS_PER_TICK / slack = 1 / (1/4) = 4``: + * all sleep durations greater or equal 4ms will meet the constraints. + * * ``HZ=1000`` with ``slack=12.5%``: ``MSECS_PER_TICK / slack = 1 / (1/8) = 8``: + * all sleep durations greater or equal 8ms will meet the constraints. + * * ``HZ=250`` with ``slack=25%``: ``MSECS_PER_TICK / slack = 4 / (1/4) = 16``: + * all sleep durations greater or equal 16ms will meet the constraints. + * * ``HZ=250`` with ``slack=12.5%``: ``MSECS_PER_TICK / slack = 4 / (1/8) = 32``: + * all sleep durations greater or equal 32ms will meet the constraints. + * + * See also the signal aware variant msleep_interruptible(). + */ +void msleep(unsigned int msecs) +{ + unsigned long timeout = msecs_to_jiffies(msecs); + + while (timeout) + timeout = schedule_timeout_uninterruptible(timeout); +} +EXPORT_SYMBOL(msleep); + +/** + * msleep_interruptible - sleep waiting for signals + * @msecs: Requested sleep duration in milliseconds + * + * See msleep() for some basic information. + * + * The difference between msleep() and msleep_interruptible() is that the sleep + * could be interrupted by a signal delivery and then returns early. + * + * Returns: The remaining time of the sleep duration transformed to msecs (see + * schedule_timeout() for details). + */ +unsigned long msleep_interruptible(unsigned int msecs) +{ + unsigned long timeout = msecs_to_jiffies(msecs); + + while (timeout && !signal_pending(current)) + timeout = schedule_timeout_interruptible(timeout); + return jiffies_to_msecs(timeout); +} +EXPORT_SYMBOL(msleep_interruptible); + +/** + * usleep_range_state - Sleep for an approximate time in a given state + * @min: Minimum time in usecs to sleep + * @max: Maximum time in usecs to sleep + * @state: State of the current task that will be while sleeping + * + * usleep_range_state() sleeps at least for the minimum specified time but not + * longer than the maximum specified amount of time. The range might reduce + * power usage by allowing hrtimers to coalesce an already scheduled interrupt + * with this hrtimer. In the worst case, an interrupt is scheduled for the upper + * bound. + * + * The sleeping task is set to the specified state before starting the sleep. + * + * In non-atomic context where the exact wakeup time is flexible, use + * usleep_range() or its variants instead of udelay(). The sleep improves + * responsiveness by avoiding the CPU-hogging busy-wait of udelay(). + */ +void __sched usleep_range_state(unsigned long min, unsigned long max, unsigned int state) +{ + ktime_t exp = ktime_add_us(ktime_get(), min); + u64 delta = (u64)(max - min) * NSEC_PER_USEC; + + if (WARN_ON_ONCE(max < min)) + delta = 0; + + for (;;) { + __set_current_state(state); + /* Do not return before the requested sleep time has elapsed */ + if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS)) + break; + } +} +EXPORT_SYMBOL(usleep_range_state); |
