aboutsummaryrefslogtreecommitdiffstats
path: root/fs/bcachefs/btree_update_interior.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/bcachefs/btree_update_interior.c')
-rw-r--r--fs/bcachefs/btree_update_interior.c2171
1 files changed, 2171 insertions, 0 deletions
diff --git a/fs/bcachefs/btree_update_interior.c b/fs/bcachefs/btree_update_interior.c
new file mode 100644
index 000000000000..1710efd7c687
--- /dev/null
+++ b/fs/bcachefs/btree_update_interior.c
@@ -0,0 +1,2171 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include "bcachefs.h"
+#include "alloc.h"
+#include "bkey_methods.h"
+#include "btree_cache.h"
+#include "btree_gc.h"
+#include "btree_update.h"
+#include "btree_update_interior.h"
+#include "btree_io.h"
+#include "btree_iter.h"
+#include "btree_locking.h"
+#include "buckets.h"
+#include "extents.h"
+#include "journal.h"
+#include "journal_reclaim.h"
+#include "keylist.h"
+#include "replicas.h"
+#include "super-io.h"
+#include "trace.h"
+
+#include <linux/random.h>
+
+static void btree_node_will_make_reachable(struct btree_update *,
+ struct btree *);
+static void btree_update_drop_new_node(struct bch_fs *, struct btree *);
+static void bch2_btree_set_root_ondisk(struct bch_fs *, struct btree *, int);
+
+/* Debug code: */
+
+static void btree_node_interior_verify(struct btree *b)
+{
+ struct btree_node_iter iter;
+ struct bkey_packed *k;
+
+ BUG_ON(!b->level);
+
+ bch2_btree_node_iter_init(&iter, b, b->key.k.p, false, false);
+#if 1
+ BUG_ON(!(k = bch2_btree_node_iter_peek(&iter, b)) ||
+ bkey_cmp_left_packed(b, k, &b->key.k.p));
+
+ BUG_ON((bch2_btree_node_iter_advance(&iter, b),
+ !bch2_btree_node_iter_end(&iter)));
+#else
+ const char *msg;
+
+ msg = "not found";
+ k = bch2_btree_node_iter_peek(&iter, b);
+ if (!k)
+ goto err;
+
+ msg = "isn't what it should be";
+ if (bkey_cmp_left_packed(b, k, &b->key.k.p))
+ goto err;
+
+ bch2_btree_node_iter_advance(&iter, b);
+
+ msg = "isn't last key";
+ if (!bch2_btree_node_iter_end(&iter))
+ goto err;
+ return;
+err:
+ bch2_dump_btree_node(b);
+ printk(KERN_ERR "last key %llu:%llu %s\n", b->key.k.p.inode,
+ b->key.k.p.offset, msg);
+ BUG();
+#endif
+}
+
+/* Calculate ideal packed bkey format for new btree nodes: */
+
+void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
+{
+ struct bkey_packed *k;
+ struct bset_tree *t;
+ struct bkey uk;
+
+ bch2_bkey_format_add_pos(s, b->data->min_key);
+
+ for_each_bset(b, t)
+ for (k = btree_bkey_first(b, t);
+ k != btree_bkey_last(b, t);
+ k = bkey_next(k))
+ if (!bkey_whiteout(k)) {
+ uk = bkey_unpack_key(b, k);
+ bch2_bkey_format_add_key(s, &uk);
+ }
+}
+
+static struct bkey_format bch2_btree_calc_format(struct btree *b)
+{
+ struct bkey_format_state s;
+
+ bch2_bkey_format_init(&s);
+ __bch2_btree_calc_format(&s, b);
+
+ return bch2_bkey_format_done(&s);
+}
+
+static size_t btree_node_u64s_with_format(struct btree *b,
+ struct bkey_format *new_f)
+{
+ struct bkey_format *old_f = &b->format;
+
+ /* stupid integer promotion rules */
+ ssize_t delta =
+ (((int) new_f->key_u64s - old_f->key_u64s) *
+ (int) b->nr.packed_keys) +
+ (((int) new_f->key_u64s - BKEY_U64s) *
+ (int) b->nr.unpacked_keys);
+
+ BUG_ON(delta + b->nr.live_u64s < 0);
+
+ return b->nr.live_u64s + delta;
+}
+
+/**
+ * btree_node_format_fits - check if we could rewrite node with a new format
+ *
+ * This assumes all keys can pack with the new format -- it just checks if
+ * the re-packed keys would fit inside the node itself.
+ */
+bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
+ struct bkey_format *new_f)
+{
+ size_t u64s = btree_node_u64s_with_format(b, new_f);
+
+ return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
+}
+
+/* Btree node freeing/allocation: */
+
+static bool btree_key_matches(struct bch_fs *c,
+ struct bkey_s_c_extent l,
+ struct bkey_s_c_extent r)
+{
+ const struct bch_extent_ptr *ptr1, *ptr2;
+
+ extent_for_each_ptr(l, ptr1)
+ extent_for_each_ptr(r, ptr2)
+ if (ptr1->dev == ptr2->dev &&
+ ptr1->gen == ptr2->gen &&
+ ptr1->offset == ptr2->offset)
+ return true;
+
+ return false;
+}
+
+/*
+ * We're doing the index update that makes @b unreachable, update stuff to
+ * reflect that:
+ *
+ * Must be called _before_ btree_update_updated_root() or
+ * btree_update_updated_node:
+ */
+static void bch2_btree_node_free_index(struct btree_update *as, struct btree *b,
+ struct bkey_s_c k,
+ struct bch_fs_usage *stats)
+{
+ struct bch_fs *c = as->c;
+ struct pending_btree_node_free *d;
+ unsigned replicas;
+
+ /*
+ * btree_update lock is only needed here to avoid racing with
+ * gc:
+ */
+ mutex_lock(&c->btree_interior_update_lock);
+
+ for (d = as->pending; d < as->pending + as->nr_pending; d++)
+ if (!bkey_cmp(k.k->p, d->key.k.p) &&
+ btree_key_matches(c, bkey_s_c_to_extent(k),
+ bkey_i_to_s_c_extent(&d->key)))
+ goto found;
+ BUG();
+found:
+ BUG_ON(d->index_update_done);
+ d->index_update_done = true;
+
+ /*
+ * Btree nodes are accounted as freed in bch_alloc_stats when they're
+ * freed from the index:
+ */
+ replicas = bch2_extent_nr_dirty_ptrs(k);
+ if (replicas)
+ stats->s[replicas - 1].data[S_META] -= c->opts.btree_node_size;
+
+ /*
+ * We're dropping @k from the btree, but it's still live until the
+ * index update is persistent so we need to keep a reference around for
+ * mark and sweep to find - that's primarily what the
+ * btree_node_pending_free list is for.
+ *
+ * So here (when we set index_update_done = true), we're moving an
+ * existing reference to a different part of the larger "gc keyspace" -
+ * and the new position comes after the old position, since GC marks
+ * the pending free list after it walks the btree.
+ *
+ * If we move the reference while mark and sweep is _between_ the old
+ * and the new position, mark and sweep will see the reference twice
+ * and it'll get double accounted - so check for that here and subtract
+ * to cancel out one of mark and sweep's markings if necessary:
+ */
+
+ /*
+ * bch2_mark_key() compares the current gc pos to the pos we're
+ * moving this reference from, hence one comparison here:
+ */
+ if (gc_pos_cmp(c->gc_pos, gc_phase(GC_PHASE_PENDING_DELETE)) < 0) {
+ struct bch_fs_usage tmp = { 0 };
+
+ bch2_mark_key(c, bkey_i_to_s_c(&d->key),
+ -c->opts.btree_node_size, true, b
+ ? gc_pos_btree_node(b)
+ : gc_pos_btree_root(as->btree_id),
+ &tmp, 0, 0);
+ /*
+ * Don't apply tmp - pending deletes aren't tracked in
+ * bch_alloc_stats:
+ */
+ }
+
+ mutex_unlock(&c->btree_interior_update_lock);
+}
+
+static void __btree_node_free(struct bch_fs *c, struct btree *b)
+{
+ trace_btree_node_free(c, b);
+
+ BUG_ON(btree_node_dirty(b));
+ BUG_ON(btree_node_need_write(b));
+ BUG_ON(b == btree_node_root(c, b));
+ BUG_ON(b->ob.nr);
+ BUG_ON(!list_empty(&b->write_blocked));
+ BUG_ON(b->will_make_reachable);
+
+ clear_btree_node_noevict(b);
+
+ bch2_btree_node_hash_remove(&c->btree_cache, b);
+
+ mutex_lock(&c->btree_cache.lock);
+ list_move(&b->list, &c->btree_cache.freeable);
+ mutex_unlock(&c->btree_cache.lock);
+}
+
+void bch2_btree_node_free_never_inserted(struct bch_fs *c, struct btree *b)
+{
+ struct btree_ob_ref ob = b->ob;
+
+ btree_update_drop_new_node(c, b);
+
+ b->ob.nr = 0;
+
+ clear_btree_node_dirty(b);
+
+ btree_node_lock_type(c, b, SIX_LOCK_write);
+ __btree_node_free(c, b);
+ six_unlock_write(&b->lock);
+
+ bch2_open_bucket_put_refs(c, &ob.nr, ob.refs);
+}
+
+void bch2_btree_node_free_inmem(struct bch_fs *c, struct btree *b,
+ struct btree_iter *iter)
+{
+ /*
+ * Is this a node that isn't reachable on disk yet?
+ *
+ * Nodes that aren't reachable yet have writes blocked until they're
+ * reachable - now that we've cancelled any pending writes and moved
+ * things waiting on that write to wait on this update, we can drop this
+ * node from the list of nodes that the other update is making
+ * reachable, prior to freeing it:
+ */
+ btree_update_drop_new_node(c, b);
+
+ __bch2_btree_node_lock_write(b, iter);
+ __btree_node_free(c, b);
+ six_unlock_write(&b->lock);
+
+ bch2_btree_iter_node_drop(iter, b);
+}
+
+static void bch2_btree_node_free_ondisk(struct bch_fs *c,
+ struct pending_btree_node_free *pending)
+{
+ struct bch_fs_usage stats = { 0 };
+
+ BUG_ON(!pending->index_update_done);
+
+ bch2_mark_key(c, bkey_i_to_s_c(&pending->key),
+ -c->opts.btree_node_size, true,
+ gc_phase(GC_PHASE_PENDING_DELETE),
+ &stats, 0, 0);
+ /*
+ * Don't apply stats - pending deletes aren't tracked in
+ * bch_alloc_stats:
+ */
+}
+
+void bch2_btree_open_bucket_put(struct bch_fs *c, struct btree *b)
+{
+ bch2_open_bucket_put_refs(c, &b->ob.nr, b->ob.refs);
+}
+
+static struct btree *__bch2_btree_node_alloc(struct bch_fs *c,
+ struct disk_reservation *res,
+ struct closure *cl,
+ unsigned flags)
+{
+ struct write_point *wp;
+ struct btree *b;
+ BKEY_PADDED(k) tmp;
+ struct bkey_i_extent *e;
+ struct btree_ob_ref ob;
+ struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
+ unsigned nr_reserve;
+ enum alloc_reserve alloc_reserve;
+
+ if (flags & BTREE_INSERT_USE_ALLOC_RESERVE) {
+ nr_reserve = 0;
+ alloc_reserve = RESERVE_ALLOC;
+ } else if (flags & BTREE_INSERT_USE_RESERVE) {
+ nr_reserve = BTREE_NODE_RESERVE / 2;
+ alloc_reserve = RESERVE_BTREE;
+ } else {
+ nr_reserve = BTREE_NODE_RESERVE;
+ alloc_reserve = RESERVE_NONE;
+ }
+
+ mutex_lock(&c->btree_reserve_cache_lock);
+ if (c->btree_reserve_cache_nr > nr_reserve) {
+ struct btree_alloc *a =
+ &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
+
+ ob = a->ob;
+ bkey_copy(&tmp.k, &a->k);
+ mutex_unlock(&c->btree_reserve_cache_lock);
+ goto mem_alloc;
+ }
+ mutex_unlock(&c->btree_reserve_cache_lock);
+
+retry:
+ wp = bch2_alloc_sectors_start(c, c->opts.foreground_target,
+ writepoint_ptr(&c->btree_write_point),
+ &devs_have,
+ res->nr_replicas,
+ c->opts.metadata_replicas_required,
+ alloc_reserve, 0, cl);
+ if (IS_ERR(wp))
+ return ERR_CAST(wp);
+
+ if (wp->sectors_free < c->opts.btree_node_size) {
+ struct open_bucket *ob;
+ unsigned i;
+
+ writepoint_for_each_ptr(wp, ob, i)
+ if (ob->sectors_free < c->opts.btree_node_size)
+ ob->sectors_free = 0;
+
+ bch2_alloc_sectors_done(c, wp);
+ goto retry;
+ }
+
+ e = bkey_extent_init(&tmp.k);
+ bch2_alloc_sectors_append_ptrs(c, wp, e, c->opts.btree_node_size);
+
+ ob.nr = 0;
+ bch2_open_bucket_get(c, wp, &ob.nr, ob.refs);
+ bch2_alloc_sectors_done(c, wp);
+mem_alloc:
+ b = bch2_btree_node_mem_alloc(c);
+
+ /* we hold cannibalize_lock: */
+ BUG_ON(IS_ERR(b));
+ BUG_ON(b->ob.nr);
+
+ bkey_copy(&b->key, &tmp.k);
+ b->ob = ob;
+
+ return b;
+}
+
+static struct btree *bch2_btree_node_alloc(struct btree_update *as, unsigned level)
+{
+ struct bch_fs *c = as->c;
+ struct btree *b;
+
+ BUG_ON(level >= BTREE_MAX_DEPTH);
+ BUG_ON(!as->reserve->nr);
+
+ b = as->reserve->b[--as->reserve->nr];
+
+ BUG_ON(bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id));
+
+ set_btree_node_accessed(b);
+ set_btree_node_dirty(b);
+
+ bch2_bset_init_first(b, &b->data->keys);
+ memset(&b->nr, 0, sizeof(b->nr));
+ b->data->magic = cpu_to_le64(bset_magic(c));
+ b->data->flags = 0;
+ SET_BTREE_NODE_ID(b->data, as->btree_id);
+ SET_BTREE_NODE_LEVEL(b->data, level);
+ b->data->ptr = bkey_i_to_extent(&b->key)->v.start->ptr;
+
+ bch2_btree_build_aux_trees(b);
+
+ btree_node_will_make_reachable(as, b);
+
+ trace_btree_node_alloc(c, b);
+ return b;
+}
+
+struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *as,
+ struct btree *b,
+ struct bkey_format format)
+{
+ struct btree *n;
+
+ n = bch2_btree_node_alloc(as, b->level);
+
+ n->data->min_key = b->data->min_key;
+ n->data->max_key = b->data->max_key;
+ n->data->format = format;
+ SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
+
+ btree_node_set_format(n, format);
+
+ bch2_btree_sort_into(as->c, n, b);
+
+ btree_node_reset_sib_u64s(n);
+
+ n->key.k.p = b->key.k.p;
+ return n;
+}
+
+static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
+ struct btree *b)
+{
+ struct bkey_format new_f = bch2_btree_calc_format(b);
+
+ /*
+ * The keys might expand with the new format - if they wouldn't fit in
+ * the btree node anymore, use the old format for now:
+ */
+ if (!bch2_btree_node_format_fits(as->c, b, &new_f))
+ new_f = b->format;
+
+ return __bch2_btree_node_alloc_replacement(as, b, new_f);
+}
+
+static struct btree *__btree_root_alloc(struct btree_update *as, unsigned level)
+{
+ struct btree *b = bch2_btree_node_alloc(as, level);
+
+ b->data->min_key = POS_MIN;
+ b->data->max_key = POS_MAX;
+ b->data->format = bch2_btree_calc_format(b);
+ b->key.k.p = POS_MAX;
+
+ btree_node_set_format(b, b->data->format);
+ bch2_btree_build_aux_trees(b);
+
+ six_unlock_write(&b->lock);
+
+ return b;
+}
+
+static void bch2_btree_reserve_put(struct bch_fs *c, struct btree_reserve *reserve)
+{
+ bch2_disk_reservation_put(c, &reserve->disk_res);
+
+ mutex_lock(&c->btree_reserve_cache_lock);
+
+ while (reserve->nr) {
+ struct btree *b = reserve->b[--reserve->nr];
+
+ six_unlock_write(&b->lock);
+
+ if (c->btree_reserve_cache_nr <
+ ARRAY_SIZE(c->btree_reserve_cache)) {
+ struct btree_alloc *a =
+ &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
+
+ a->ob = b->ob;
+ b->ob.nr = 0;
+ bkey_copy(&a->k, &b->key);
+ } else {
+ bch2_btree_open_bucket_put(c, b);
+ }
+
+ btree_node_lock_type(c, b, SIX_LOCK_write);
+ __btree_node_free(c, b);
+ six_unlock_write(&b->lock);
+
+ six_unlock_intent(&b->lock);
+ }
+
+ mutex_unlock(&c->btree_reserve_cache_lock);
+
+ mempool_free(reserve, &c->btree_reserve_pool);
+}
+
+static struct btree_reserve *bch2_btree_reserve_get(struct bch_fs *c,
+ unsigned nr_nodes,
+ unsigned flags,
+ struct closure *cl)
+{
+ struct btree_reserve *reserve;
+ struct btree *b;
+ struct disk_reservation disk_res = { 0, 0 };
+ unsigned sectors = nr_nodes * c->opts.btree_node_size;
+ int ret, disk_res_flags = BCH_DISK_RESERVATION_GC_LOCK_HELD;
+
+ if (flags & BTREE_INSERT_NOFAIL)
+ disk_res_flags |= BCH_DISK_RESERVATION_NOFAIL;
+
+ /*
+ * This check isn't necessary for correctness - it's just to potentially
+ * prevent us from doing a lot of work that'll end up being wasted:
+ */
+ ret = bch2_journal_error(&c->journal);
+ if (ret)
+ return ERR_PTR(ret);
+
+ if (bch2_disk_reservation_get(c, &disk_res, sectors,
+ c->opts.metadata_replicas,
+ disk_res_flags))
+ return ERR_PTR(-ENOSPC);
+
+ BUG_ON(nr_nodes > BTREE_RESERVE_MAX);
+
+ /*
+ * Protects reaping from the btree node cache and using the btree node
+ * open bucket reserve:
+ */
+ ret = bch2_btree_cache_cannibalize_lock(c, cl);
+ if (ret) {
+ bch2_disk_reservation_put(c, &disk_res);
+ return ERR_PTR(ret);
+ }
+
+ reserve = mempool_alloc(&c->btree_reserve_pool, GFP_NOIO);
+
+ reserve->disk_res = disk_res;
+ reserve->nr = 0;
+
+ while (reserve->nr < nr_nodes) {
+ b = __bch2_btree_node_alloc(c, &disk_res,
+ flags & BTREE_INSERT_NOWAIT
+ ? NULL : cl, flags);
+ if (IS_ERR(b)) {
+ ret = PTR_ERR(b);
+ goto err_free;
+ }
+
+ ret = bch2_mark_bkey_replicas(c, BCH_DATA_BTREE,
+ bkey_i_to_s_c(&b->key));
+ if (ret)
+ goto err_free;
+
+ reserve->b[reserve->nr++] = b;
+ }
+
+ bch2_btree_cache_cannibalize_unlock(c);
+ return reserve;
+err_free:
+ bch2_btree_reserve_put(c, reserve);
+ bch2_btree_cache_cannibalize_unlock(c);
+ trace_btree_reserve_get_fail(c, nr_nodes, cl);
+ return ERR_PTR(ret);
+}
+
+/* Asynchronous interior node update machinery */
+
+static void bch2_btree_update_free(struct btree_update *as)
+{
+ struct bch_fs *c = as->c;
+
+ BUG_ON(as->nr_new_nodes);
+ BUG_ON(as->nr_pending);
+
+ if (as->reserve)
+ bch2_btree_reserve_put(c, as->reserve);
+
+ mutex_lock(&c->btree_interior_update_lock);
+ list_del(&as->list);
+
+ closure_debug_destroy(&as->cl);
+ mempool_free(as, &c->btree_interior_update_pool);
+ percpu_ref_put(&c->writes);
+
+ closure_wake_up(&c->btree_interior_update_wait);
+ mutex_unlock(&c->btree_interior_update_lock);
+}
+
+static void btree_update_nodes_reachable(struct closure *cl)
+{
+ struct btree_update *as = container_of(cl, struct btree_update, cl);
+ struct bch_fs *c = as->c;
+
+ bch2_journal_pin_drop(&c->journal, &as->journal);
+
+ mutex_lock(&c->btree_interior_update_lock);
+
+ while (as->nr_new_nodes) {
+ struct btree *b = as->new_nodes[--as->nr_new_nodes];
+
+ BUG_ON(b->will_make_reachable != (unsigned long) as);
+ b->will_make_reachable = 0;
+ mutex_unlock(&c->btree_interior_update_lock);
+
+ /*
+ * b->will_make_reachable prevented it from being written, so
+ * write it now if it needs to be written:
+ */
+ btree_node_lock_type(c, b, SIX_LOCK_read);
+ bch2_btree_node_write_cond(c, b, btree_node_need_write(b));
+ six_unlock_read(&b->lock);
+ mutex_lock(&c->btree_interior_update_lock);
+ }
+
+ while (as->nr_pending)
+ bch2_btree_node_free_ondisk(c, &as->pending[--as->nr_pending]);
+
+ mutex_unlock(&c->btree_interior_update_lock);
+
+ closure_wake_up(&as->wait);
+
+ bch2_btree_update_free(as);
+}
+
+static void btree_update_wait_on_journal(struct closure *cl)
+{
+ struct btree_update *as = container_of(cl, struct btree_update, cl);
+ struct bch_fs *c = as->c;
+ int ret;
+
+ ret = bch2_journal_open_seq_async(&c->journal, as->journal_seq, cl);
+ if (ret < 0)
+ goto err;
+ if (!ret) {
+ continue_at(cl, btree_update_wait_on_journal, system_wq);
+ return;
+ }
+
+ bch2_journal_flush_seq_async(&c->journal, as->journal_seq, cl);
+err:
+ continue_at(cl, btree_update_nodes_reachable, system_wq);
+}
+
+static void btree_update_nodes_written(struct closure *cl)
+{
+ struct btree_update *as = container_of(cl, struct btree_update, cl);
+ struct bch_fs *c = as->c;
+ struct btree *b;
+
+ /*
+ * We did an update to a parent node where the pointers we added pointed
+ * to child nodes that weren't written yet: now, the child nodes have
+ * been written so we can write out the update to the interior node.
+ */
+retry:
+ mutex_lock(&c->btree_interior_update_lock);
+ as->nodes_written = true;
+
+ switch (as->mode) {
+ case BTREE_INTERIOR_NO_UPDATE:
+ BUG();
+ case BTREE_INTERIOR_UPDATING_NODE:
+ /* The usual case: */
+ b = READ_ONCE(as->b);
+
+ if (!six_trylock_read(&b->lock)) {
+ mutex_unlock(&c->btree_interior_update_lock);
+ btree_node_lock_type(c, b, SIX_LOCK_read);
+ six_unlock_read(&b->lock);
+ goto retry;
+ }
+
+ BUG_ON(!btree_node_dirty(b));
+ closure_wait(&btree_current_write(b)->wait, cl);
+
+ list_del(&as->write_blocked_list);
+ mutex_unlock(&c->btree_interior_update_lock);
+
+ /*
+ * b->write_blocked prevented it from being written, so
+ * write it now if it needs to be written:
+ */
+ bch2_btree_node_write_cond(c, b, true);
+ six_unlock_read(&b->lock);
+ break;
+
+ case BTREE_INTERIOR_UPDATING_AS:
+ /*
+ * The btree node we originally updated has been freed and is
+ * being rewritten - so we need to write anything here, we just
+ * need to signal to that btree_update that it's ok to make the
+ * new replacement node visible:
+ */
+ closure_put(&as->parent_as->cl);
+
+ /*
+ * and then we have to wait on that btree_update to finish:
+ */
+ closure_wait(&as->parent_as->wait, cl);
+ mutex_unlock(&c->btree_interior_update_lock);
+ break;
+
+ case BTREE_INTERIOR_UPDATING_ROOT:
+ /* b is the new btree root: */
+ b = READ_ONCE(as->b);
+
+ if (!six_trylock_read(&b->lock)) {
+ mutex_unlock(&c->btree_interior_update_lock);
+ btree_node_lock_type(c, b, SIX_LOCK_read);
+ six_unlock_read(&b->lock);
+ goto retry;
+ }
+
+ BUG_ON(c->btree_roots[b->btree_id].as != as);
+ c->btree_roots[b->btree_id].as = NULL;
+
+ bch2_btree_set_root_ondisk(c, b, WRITE);
+
+ /*
+ * We don't have to wait anything anything here (before
+ * btree_update_nodes_reachable frees the old nodes
+ * ondisk) - we've ensured that the very next journal write will
+ * have the pointer to the new root, and before the allocator
+ * can reuse the old nodes it'll have to do a journal commit:
+ */
+ six_unlock_read(&b->lock);
+ mutex_unlock(&c->btree_interior_update_lock);
+
+ /*
+ * Bit of funny circularity going on here we have to break:
+ *
+ * We have to drop our journal pin before writing the journal
+ * entry that points to the new btree root: else, we could
+ * deadlock if the journal currently happens to be full.
+ *
+ * This mean we're dropping the journal pin _before_ the new
+ * nodes are technically reachable - but this is safe, because
+ * after the bch2_btree_set_root_ondisk() call above they will
+ * be reachable as of the very next journal write:
+ */
+ bch2_journal_pin_drop(&c->journal, &as->journal);
+
+ as->journal_seq = bch2_journal_last_unwritten_seq(&c->journal);
+
+ btree_update_wait_on_journal(cl);
+ return;
+ }
+
+ continue_at(cl, btree_update_nodes_reachable, system_wq);
+}
+
+/*
+ * We're updating @b with pointers to nodes that haven't finished writing yet:
+ * block @b from being written until @as completes
+ */
+static void btree_update_updated_node(struct btree_update *as, struct btree *b)
+{
+ struct bch_fs *c = as->c;
+
+ mutex_lock(&c->btree_interior_update_lock);
+
+ BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
+ BUG_ON(!btree_node_dirty(b));
+
+ as->mode = BTREE_INTERIOR_UPDATING_NODE;
+ as->b = b;
+ list_add(&as->write_blocked_list, &b->write_blocked);
+
+ mutex_unlock(&c->btree_interior_update_lock);
+
+ /*
+ * In general, when you're staging things in a journal that will later
+ * be written elsewhere, and you also want to guarantee ordering: that
+ * is, if you have updates a, b, c, after a crash you should never see c
+ * and not a or b - there's a problem:
+ *
+ * If the final destination of the update(s) (i.e. btree node) can be
+ * written/flushed _before_ the relevant journal entry - oops, that
+ * breaks ordering, since the various leaf nodes can be written in any
+ * order.
+ *
+ * Normally we use bset->journal_seq to deal with this - if during
+ * recovery we find a btree node write that's newer than the newest
+ * journal entry, we just ignore it - we don't need it, anything we're
+ * supposed to have (that we reported as completed via fsync()) will
+ * still be in the journal, and as far as the state of the journal is
+ * concerned that btree node write never happened.
+ *
+ * That breaks when we're rewriting/splitting/merging nodes, since we're
+ * mixing btree node writes that haven't happened yet with previously
+ * written data that has been reported as completed to the journal.
+ *
+ * Thus, before making the new nodes reachable, we have to wait the
+ * newest journal sequence number we have data for to be written (if it
+ * hasn't been yet).
+ */
+ bch2_journal_wait_on_seq(&c->journal, as->journal_seq, &as->cl);
+}
+
+static void interior_update_flush(struct journal *j,
+ struct journal_entry_pin *pin, u64 seq)
+{
+ struct btree_update *as =
+ container_of(pin, struct btree_update, journal);
+
+ bch2_journal_flush_seq_async(j, as->journal_seq, NULL);
+}
+
+static void btree_update_reparent(struct btree_update *as,
+ struct btree_update *child)
+{
+ struct bch_fs *c = as->c;
+
+ child->b = NULL;
+ child->mode = BTREE_INTERIOR_UPDATING_AS;
+ child->parent_as = as;
+ closure_get(&as->cl);
+
+ /*
+ * When we write a new btree root, we have to drop our journal pin
+ * _before_ the new nodes are technically reachable; see
+ * btree_update_nodes_written().
+ *
+ * This goes for journal pins that are recursively blocked on us - so,
+ * just transfer the journal pin to the new interior update so
+ * btree_update_nodes_written() can drop it.
+ */
+ bch2_journal_pin_add_if_older(&c->journal, &child->journal,
+ &as->journal, interior_update_flush);
+ bch2_journal_pin_drop(&c->journal, &child->journal);
+
+ as->journal_seq = max(as->journal_seq, child->journal_seq);
+}
+
+static void btree_update_updated_root(struct btree_update *as)
+{
+ struct bch_fs *c = as->c;
+ struct btree_root *r = &c->btree_roots[as->btree_id];
+
+ mutex_lock(&c->btree_interior_update_lock);
+
+ BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
+
+ /*
+ * Old root might not be persistent yet - if so, redirect its
+ * btree_update operation to point to us:
+ */
+ if (r->as)
+ btree_update_reparent(as, r->as);
+
+ as->mode = BTREE_INTERIOR_UPDATING_ROOT;
+ as->b = r->b;
+ r->as = as;
+
+ mutex_unlock(&c->btree_interior_update_lock);
+
+ /*
+ * When we're rewriting nodes and updating interior nodes, there's an
+ * issue with updates that haven't been written in the journal getting
+ * mixed together with older data - see btree_update_updated_node()
+ * for the explanation.
+ *
+ * However, this doesn't affect us when we're writing a new btree root -
+ * because to make that new root reachable we have to write out a new
+ * journal entry, which must necessarily be newer than as->journal_seq.
+ */
+}
+
+static void btree_node_will_make_reachable(struct btree_update *as,
+ struct btree *b)
+{
+ struct bch_fs *c = as->c;
+
+ mutex_lock(&c->btree_interior_update_lock);
+ BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
+ BUG_ON(b->will_make_reachable);
+
+ as->new_nodes[as->nr_new_nodes++] = b;
+ b->will_make_reachable = 1UL|(unsigned long) as;
+
+ closure_get(&as->cl);
+ mutex_unlock(&c->btree_interior_update_lock);
+}
+
+static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
+{
+ struct btree_update *as;
+ unsigned long v;
+ unsigned i;
+
+ mutex_lock(&c->btree_interior_update_lock);
+ v = xchg(&b->will_make_reachable, 0);
+ as = (struct btree_update *) (v & ~1UL);
+
+ if (!as) {
+ mutex_unlock(&c->btree_interior_update_lock);
+ return;
+ }
+
+ for (i = 0; i < as->nr_new_nodes; i++)
+ if (as->new_nodes[i] == b)
+ goto found;
+
+ BUG();
+found:
+ array_remove_item(as->new_nodes, as->nr_new_nodes, i);
+ mutex_unlock(&c->btree_interior_update_lock);
+
+ if (v & 1)
+ closure_put(&as->cl);
+}
+
+static void btree_interior_update_add_node_reference(struct btree_update *as,
+ struct btree *b)
+{
+ struct bch_fs *c = as->c;
+ struct pending_btree_node_free *d;
+
+ mutex_lock(&c->btree_interior_update_lock);
+
+ /* Add this node to the list of nodes being freed: */
+ BUG_ON(as->nr_pending >= ARRAY_SIZE(as->pending));
+
+ d = &as->pending[as->nr_pending++];
+ d->index_update_done = false;
+ d->seq = b->data->keys.seq;
+ d->btree_id = b->btree_id;
+ d->level = b->level;
+ bkey_copy(&d->key, &b->key);
+
+ mutex_unlock(&c->btree_interior_update_lock);
+}
+
+/*
+ * @b is being split/rewritten: it may have pointers to not-yet-written btree
+ * nodes and thus outstanding btree_updates - redirect @b's
+ * btree_updates to point to this btree_update:
+ */
+void bch2_btree_interior_update_will_free_node(struct btree_update *as,
+ struct btree *b)
+{
+ struct bch_fs *c = as->c;
+ struct closure *cl, *cl_n;
+ struct btree_update *p, *n;
+ struct btree_write *w;
+ struct bset_tree *t;
+
+ set_btree_node_dying(b);
+
+ if (btree_node_fake(b))
+ return;
+
+ btree_interior_update_add_node_reference(as, b);
+
+ /*
+ * Does this node have data that hasn't been written in the journal?
+ *
+ * If so, we have to wait for the corresponding journal entry to be
+ * written before making the new nodes reachable - we can't just carry
+ * over the bset->journal_seq tracking, since we'll be mixing those keys
+ * in with keys that aren't in the journal anymore:
+ */
+ for_each_bset(b, t)
+ as->journal_seq = max(as->journal_seq,
+ le64_to_cpu(bset(b, t)->journal_seq));
+
+ mutex_lock(&c->btree_interior_update_lock);
+
+ /*
+ * Does this node have any btree_update operations preventing
+ * it from being written?
+ *
+ * If so, redirect them to point to this btree_update: we can
+ * write out our new nodes, but we won't make them visible until those
+ * operations complete
+ */
+ list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
+ list_del(&p->write_blocked_list);
+ btree_update_reparent(as, p);
+ }
+
+ clear_btree_node_dirty(b);
+ clear_btree_node_need_write(b);
+ w = btree_current_write(b);
+
+ /*
+ * Does this node have any btree_update operations waiting on this node
+ * to be written?
+ *
+ * If so, wake them up when this btree_update operation is reachable:
+ */
+ llist_for_each_entry_safe(cl, cl_n, llist_del_all(&w->wait.list), list)
+ llist_add(&cl->list, &as->wait.list);
+
+ /*
+ * Does this node have unwritten data that has a pin on the journal?
+ *
+ * If so, transfer that pin to the btree_update operation -
+ * note that if we're freeing multiple nodes, we only need to keep the
+ * oldest pin of any of the nodes we're freeing. We'll release the pin
+ * when the new nodes are persistent and reachable on disk:
+ */
+ bch2_journal_pin_add_if_older(&c->journal, &w->journal,
+ &as->journal, interior_update_flush);
+ bch2_journal_pin_drop(&c->journal, &w->journal);
+
+ w = btree_prev_write(b);
+ bch2_journal_pin_add_if_older(&c->journal, &w->journal,
+ &as->journal, interior_update_flush);
+ bch2_journal_pin_drop(&c->journal, &w->journal);
+
+ mutex_unlock(&c->btree_interior_update_lock);
+}
+
+void bch2_btree_update_done(struct btree_update *as)
+{
+ BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
+
+ bch2_btree_reserve_put(as->c, as->reserve);
+ as->reserve = NULL;
+
+ continue_at(&as->cl, btree_update_nodes_written, system_freezable_wq);
+}
+
+struct btree_update *
+bch2_btree_update_start(struct bch_fs *c, enum btree_id id,
+ unsigned nr_nodes, unsigned flags,
+ struct closure *cl)
+{
+ struct btree_reserve *reserve;
+ struct btree_update *as;
+
+ if (unlikely(!percpu_ref_tryget(&c->writes)))
+ return ERR_PTR(-EROFS);
+
+ reserve = bch2_btree_reserve_get(c, nr_nodes, flags, cl);
+ if (IS_ERR(reserve)) {
+ percpu_ref_put(&c->writes);
+ return ERR_CAST(reserve);
+ }
+
+ as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO);
+ memset(as, 0, sizeof(*as));
+ closure_init(&as->cl, NULL);
+ as->c = c;
+ as->mode = BTREE_INTERIOR_NO_UPDATE;
+ as->btree_id = id;
+ as->reserve = reserve;
+ INIT_LIST_HEAD(&as->write_blocked_list);
+
+ bch2_keylist_init(&as->parent_keys, as->inline_keys);
+
+ mutex_lock(&c->btree_interior_update_lock);
+ list_add_tail(&as->list, &c->btree_interior_update_list);
+ mutex_unlock(&c->btree_interior_update_lock);
+
+ return as;
+}
+
+/* Btree root updates: */
+
+static void __bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
+{
+ /* Root nodes cannot be reaped */
+ mutex_lock(&c->btree_cache.lock);
+ list_del_init(&b->list);
+ mutex_unlock(&c->btree_cache.lock);
+
+ mutex_lock(&c->btree_root_lock);
+ BUG_ON(btree_node_root(c, b) &&
+ (b->level < btree_node_root(c, b)->level ||
+ !btree_node_dying(btree_node_root(c, b))));
+
+ btree_node_root(c, b) = b;
+ mutex_unlock(&c->btree_root_lock);
+
+ bch2_recalc_btree_reserve(c);
+}
+
+static void bch2_btree_set_root_inmem(struct btree_update *as, struct btree *b)
+{
+ struct bch_fs *c = as->c;
+ struct btree *old = btree_node_root(c, b);
+ struct bch_fs_usage stats = { 0 };
+
+ __bch2_btree_set_root_inmem(c, b);
+
+ bch2_mark_key(c, bkey_i_to_s_c(&b->key),
+ c->opts.btree_node_size, true,
+ gc_pos_btree_root(b->btree_id),
+ &stats, 0, 0);
+
+ if (old && !btree_node_fake(old))
+ bch2_btree_node_free_index(as, NULL,
+ bkey_i_to_s_c(&old->key),
+ &stats);
+ bch2_fs_usage_apply(c, &stats, &as->reserve->disk_res,
+ gc_pos_btree_root(b->btree_id));
+}
+
+static void bch2_btree_set_root_ondisk(struct bch_fs *c, struct btree *b, int rw)
+{
+ struct btree_root *r = &c->btree_roots[b->btree_id];
+
+ mutex_lock(&c->btree_root_lock);
+
+ BUG_ON(b != r->b);
+ bkey_copy(&r->key, &b->key);
+ r->level = b->level;
+ r->alive = true;
+ if (rw == WRITE)
+ c->btree_roots_dirty = true;
+
+ mutex_unlock(&c->btree_root_lock);
+}
+
+/**
+ * bch_btree_set_root - update the root in memory and on disk
+ *
+ * To ensure forward progress, the current task must not be holding any
+ * btree node write locks. However, you must hold an intent lock on the
+ * old root.
+ *
+ * Note: This allocates a journal entry but doesn't add any keys to
+ * it. All the btree roots are part of every journal write, so there
+ * is nothing new to be done. This just guarantees that there is a
+ * journal write.
+ */
+static void bch2_btree_set_root(struct btree_update *as, struct btree *b,
+ struct btree_iter *iter)
+{
+ struct bch_fs *c = as->c;
+ struct btree *old;
+
+ trace_btree_set_root(c, b);
+ BUG_ON(!b->written);
+
+ old = btree_node_root(c, b);
+
+ /*
+ * Ensure no one is using the old root while we switch to the
+ * new root:
+ */
+ bch2_btree_node_lock_write(old, iter);
+
+ bch2_btree_set_root_inmem(as, b);
+
+ btree_update_updated_root(as);
+
+ /*
+ * Unlock old root after new root is visible:
+ *
+ * The new root isn't persistent, but that's ok: we still have
+ * an intent lock on the new root, and any updates that would
+ * depend on the new root would have to update the new root.
+ */
+ bch2_btree_node_unlock_write(old, iter);
+}
+
+/* Interior node updates: */
+
+static void bch2_insert_fixup_btree_ptr(struct btree_update *as, struct btree *b,
+ struct btree_iter *iter,
+ struct bkey_i *insert,
+ struct btree_node_iter *node_iter)
+{
+ struct bch_fs *c = as->c;
+ struct bch_fs_usage stats = { 0 };
+ struct bkey_packed *k;
+ struct bkey tmp;
+
+ BUG_ON(insert->k.u64s > bch_btree_keys_u64s_remaining(c, b));
+
+ if (bkey_extent_is_data(&insert->k))
+ bch2_mark_key(c, bkey_i_to_s_c(insert),
+ c->opts.btree_node_size, true,
+ gc_pos_btree_node(b), &stats, 0, 0);
+
+ while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
+ !btree_iter_pos_cmp_packed(b, &insert->k.p, k, false))
+ bch2_btree_node_iter_advance(node_iter, b);
+
+ /*
+ * If we're overwriting, look up pending delete and mark so that gc
+ * marks it on the pending delete list:
+ */
+ if (k && !bkey_cmp_packed(b, k, &insert->k))
+ bch2_btree_node_free_index(as, b,
+ bkey_disassemble(b, k, &tmp),
+ &stats);
+
+ bch2_fs_usage_apply(c, &stats, &as->reserve->disk_res,
+ gc_pos_btree_node(b));
+
+ bch2_btree_bset_insert_key(iter, b, node_iter, insert);
+ set_btree_node_dirty(b);
+ set_btree_node_need_write(b);
+}
+
+/*
+ * Move keys from n1 (original replacement node, now lower node) to n2 (higher
+ * node)
+ */
+static struct btree *__btree_split_node(struct btree_update *as,
+ struct btree *n1,
+ struct btree_iter *iter)
+{
+ size_t nr_packed = 0, nr_unpacked = 0;
+ struct btree *n2;
+ struct bset *set1, *set2;
+ struct bkey_packed *k, *prev = NULL;
+
+ n2 = bch2_btree_node_alloc(as, n1->level);
+
+ n2->data->max_key = n1->data->max_key;
+ n2->data->format = n1->format;
+ SET_BTREE_NODE_SEQ(n2->data, BTREE_NODE_SEQ(n1->data));
+ n2->key.k.p = n1->key.k.p;
+
+ btree_node_set_format(n2, n2->data->format);
+
+ set1 = btree_bset_first(n1);
+ set2 = btree_bset_first(n2);
+
+ /*
+ * Has to be a linear search because we don't have an auxiliary
+ * search tree yet
+ */
+ k = set1->start;
+ while (1) {
+ if (bkey_next(k) == vstruct_last(set1))
+ break;
+ if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5)
+ break;
+
+ if (bkey_packed(k))
+ nr_packed++;
+ else
+ nr_unpacked++;
+
+ prev = k;
+ k = bkey_next(k);
+ }
+
+ BUG_ON(!prev);
+
+ n1->key.k.p = bkey_unpack_pos(n1, prev);
+ n1->data->max_key = n1->key.k.p;
+ n2->data->min_key =
+ btree_type_successor(n1->btree_id, n1->key.k.p);
+
+ set2->u64s = cpu_to_le16((u64 *) vstruct_end(set1) - (u64 *) k);
+ set1->u64s = cpu_to_le16(le16_to_cpu(set1->u64s) - le16_to_cpu(set2->u64s));
+
+ set_btree_bset_end(n1, n1->set);
+ set_btree_bset_end(n2, n2->set);
+
+ n2->nr.live_u64s = le16_to_cpu(set2->u64s);
+ n2->nr.bset_u64s[0] = le16_to_cpu(set2->u64s);
+ n2->nr.packed_keys = n1->nr.packed_keys - nr_packed;
+ n2->nr.unpacked_keys = n1->nr.unpacked_keys - nr_unpacked;
+
+ n1->nr.live_u64s = le16_to_cpu(set1->u64s);
+ n1->nr.bset_u64s[0] = le16_to_cpu(set1->u64s);
+ n1->nr.packed_keys = nr_packed;
+ n1->nr.unpacked_keys = nr_unpacked;
+
+ BUG_ON(!set1->u64s);
+ BUG_ON(!set2->u64s);
+
+ memcpy_u64s(set2->start,
+ vstruct_end(set1),
+ le16_to_cpu(set2->u64s));
+
+ btree_node_reset_sib_u64s(n1);
+ btree_node_reset_sib_u64s(n2);
+
+ bch2_verify_btree_nr_keys(n1);
+ bch2_verify_btree_nr_keys(n2);
+
+ if (n1->level) {
+ btree_node_interior_verify(n1);
+ btree_node_interior_verify(n2);
+ }
+
+ return n2;
+}
+
+/*
+ * For updates to interior nodes, we've got to do the insert before we split
+ * because the stuff we're inserting has to be inserted atomically. Post split,
+ * the keys might have to go in different nodes and the split would no longer be
+ * atomic.
+ *
+ * Worse, if the insert is from btree node coalescing, if we do the insert after
+ * we do the split (and pick the pivot) - the pivot we pick might be between
+ * nodes that were coalesced, and thus in the middle of a child node post
+ * coalescing:
+ */
+static void btree_split_insert_keys(struct btree_update *as, struct btree *b,
+ struct btree_iter *iter,
+ struct keylist *keys)
+{
+ struct btree_node_iter node_iter;
+ struct bkey_i *k = bch2_keylist_front(keys);
+ struct bkey_packed *p;
+ struct bset *i;
+
+ BUG_ON(btree_node_type(b) != BKEY_TYPE_BTREE);
+
+ bch2_btree_node_iter_init(&node_iter, b, k->k.p, false, false);
+
+ while (!bch2_keylist_empty(keys)) {
+ k = bch2_keylist_front(keys);
+
+ BUG_ON(bch_keylist_u64s(keys) >
+ bch_btree_keys_u64s_remaining(as->c, b));
+ BUG_ON(bkey_cmp(k->k.p, b->data->min_key) < 0);
+ BUG_ON(bkey_cmp(k->k.p, b->data->max_key) > 0);
+
+ bch2_insert_fixup_btree_ptr(as, b, iter, k, &node_iter);
+ bch2_keylist_pop_front(keys);
+ }
+
+ /*
+ * We can't tolerate whiteouts here - with whiteouts there can be
+ * duplicate keys, and it would be rather bad if we picked a duplicate
+ * for the pivot:
+ */
+ i = btree_bset_first(b);
+ p = i->start;
+ while (p != vstruct_last(i))
+ if (bkey_deleted(p)) {
+ le16_add_cpu(&i->u64s, -p->u64s);
+ set_btree_bset_end(b, b->set);
+ memmove_u64s_down(p, bkey_next(p),
+ (u64 *) vstruct_last(i) -
+ (u64 *) p);
+ } else
+ p = bkey_next(p);
+
+ BUG_ON(b->nsets != 1 ||
+ b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s));
+
+ btree_node_interior_verify(b);
+}
+
+static void btree_split(struct btree_update *as, struct btree *b,
+ struct btree_iter *iter, struct keylist *keys,
+ unsigned flags)
+{
+ struct bch_fs *c = as->c;
+ struct btree *parent = btree_node_parent(iter, b);
+ struct btree *n1, *n2 = NULL, *n3 = NULL;
+ u64 start_time = local_clock();
+
+ BUG_ON(!parent && (b != btree_node_root(c, b)));
+ BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->level));
+
+ bch2_btree_interior_update_will_free_node(as, b);
+
+ n1 = bch2_btree_node_alloc_replacement(as, b);
+
+ if (keys)
+ btree_split_insert_keys(as, n1, iter, keys);
+
+ if (vstruct_blocks(n1->data, c->block_bits) > BTREE_SPLIT_THRESHOLD(c)) {
+ trace_btree_split(c, b);
+
+ n2 = __btree_split_node(as, n1, iter);
+
+ bch2_btree_build_aux_trees(n2);
+ bch2_btree_build_aux_trees(n1);
+ six_unlock_write(&n2->lock);
+ six_unlock_write(&n1->lock);
+
+ bch2_btree_node_write(c, n2, SIX_LOCK_intent);
+
+ /*
+ * Note that on recursive parent_keys == keys, so we
+ * can't start adding new keys to parent_keys before emptying it
+ * out (which we did with btree_split_insert_keys() above)
+ */
+ bch2_keylist_add(&as->parent_keys, &n1->key);
+ bch2_keylist_add(&as->parent_keys, &n2->key);
+
+ if (!parent) {
+ /* Depth increases, make a new root */
+ n3 = __btree_root_alloc(as, b->level + 1);
+
+ n3->sib_u64s[0] = U16_MAX;
+ n3->sib_u64s[1] = U16_MAX;
+
+ btree_split_insert_keys(as, n3, iter, &as->parent_keys);
+
+ bch2_btree_node_write(c, n3, SIX_LOCK_intent);
+ }
+ } else {
+ trace_btree_compact(c, b);
+
+ bch2_btree_build_aux_trees(n1);
+ six_unlock_write(&n1->lock);
+
+ bch2_keylist_add(&as->parent_keys, &n1->key);
+ }
+
+ bch2_btree_node_write(c, n1, SIX_LOCK_intent);
+
+ /* New nodes all written, now make them visible: */
+
+ if (parent) {
+ /* Split a non root node */
+ bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
+ } else if (n3) {
+ bch2_btree_set_root(as, n3, iter);
+ } else {
+ /* Root filled up but didn't need to be split */
+ bch2_btree_set_root(as, n1, iter);
+ }
+
+ bch2_btree_open_bucket_put(c, n1);
+ if (n2)
+ bch2_btree_open_bucket_put(c, n2);
+ if (n3)
+ bch2_btree_open_bucket_put(c, n3);
+
+ /*
+ * Note - at this point other linked iterators could still have @b read
+ * locked; we're depending on the bch2_btree_iter_node_replace() calls
+ * below removing all references to @b so we don't return with other
+ * iterators pointing to a node they have locked that's been freed.
+ *
+ * We have to free the node first because the bch2_iter_node_replace()
+ * calls will drop _our_ iterator's reference - and intent lock - to @b.
+ */
+ bch2_btree_node_free_inmem(c, b, iter);
+
+ /* Successful split, update the iterator to point to the new nodes: */
+
+ if (n3)
+ bch2_btree_iter_node_replace(iter, n3);
+ if (n2)
+ bch2_btree_iter_node_replace(iter, n2);
+ bch2_btree_iter_node_replace(iter, n1);
+
+ bch2_time_stats_update(&c->times[BCH_TIME_btree_split], start_time);
+}
+
+static void
+bch2_btree_insert_keys_interior(struct btree_update *as, struct btree *b,
+ struct btree_iter *iter, struct keylist *keys)
+{
+ struct btree_iter *linked;
+ struct btree_node_iter node_iter;
+ struct bkey_i *insert = bch2_keylist_front(keys);
+ struct bkey_packed *k;
+
+ /* Don't screw up @iter's position: */
+ node_iter = iter->l[b->level].iter;
+
+ /*
+ * btree_split(), btree_gc_coalesce() will insert keys before
+ * the iterator's current position - they know the keys go in
+ * the node the iterator points to:
+ */
+ while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
+ (bkey_cmp_packed(b, k, &insert->k) >= 0))
+ ;
+
+ while (!bch2_keylist_empty(keys)) {
+ insert = bch2_keylist_front(keys);
+
+ bch2_insert_fixup_btree_ptr(as, b, iter, insert, &node_iter);
+ bch2_keylist_pop_front(keys);
+ }
+
+ btree_update_updated_node(as, b);
+
+ for_each_btree_iter_with_node(iter, b, linked)
+ bch2_btree_node_iter_peek(&linked->l[b->level].iter, b);
+
+ bch2_btree_iter_verify(iter, b);
+}
+
+/**
+ * bch_btree_insert_node - insert bkeys into a given btree node
+ *
+ * @iter: btree iterator
+ * @keys: list of keys to insert
+ * @hook: insert callback
+ * @persistent: if not null, @persistent will wait on journal write
+ *
+ * Inserts as many keys as it can into a given btree node, splitting it if full.
+ * If a split occurred, this function will return early. This can only happen
+ * for leaf nodes -- inserts into interior nodes have to be atomic.
+ */
+void bch2_btree_insert_node(struct btree_update *as, struct btree *b,
+ struct btree_iter *iter, struct keylist *keys,
+ unsigned flags)
+{
+ struct bch_fs *c = as->c;
+ int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
+ int old_live_u64s = b->nr.live_u64s;
+ int live_u64s_added, u64s_added;
+
+ BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->level));
+ BUG_ON(!b->level);
+ BUG_ON(!as || as->b);
+ bch2_verify_keylist_sorted(keys);
+
+ if (as->must_rewrite)
+ goto split;
+
+ bch2_btree_node_lock_for_insert(c, b, iter);
+
+ if (!bch2_btree_node_insert_fits(c, b, bch_keylist_u64s(keys))) {
+ bch2_btree_node_unlock_write(b, iter);
+ goto split;
+ }
+
+ bch2_btree_insert_keys_interior(as, b, iter, keys);
+
+ live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
+ u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
+
+ if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
+ b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
+ if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
+ b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
+
+ if (u64s_added > live_u64s_added &&
+ bch2_maybe_compact_whiteouts(c, b))
+ bch2_btree_iter_reinit_node(iter, b);
+
+ bch2_btree_node_unlock_write(b, iter);
+
+ btree_node_interior_verify(b);
+
+ bch2_foreground_maybe_merge(c, iter, b->level, flags);
+ return;
+split:
+ btree_split(as, b, iter, keys, flags);
+}
+
+int bch2_btree_split_leaf(struct bch_fs *c, struct btree_iter *iter,
+ unsigned flags)
+{
+ struct btree *b = iter->l[0].b;
+ struct btree_update *as;
+ struct closure cl;
+ int ret = 0;
+ struct btree_iter *linked;
+
+ /*
+ * We already have a disk reservation and open buckets pinned; this
+ * allocation must not block:
+ */
+ for_each_btree_iter(iter, linked)
+ if (linked->btree_id == BTREE_ID_EXTENTS)
+ flags |= BTREE_INSERT_USE_RESERVE;
+
+ closure_init_stack(&cl);
+
+ /* Hack, because gc and splitting nodes doesn't mix yet: */
+ if (!down_read_trylock(&c->gc_lock)) {
+ if (flags & BTREE_INSERT_NOUNLOCK)
+ return -EINTR;
+
+ bch2_btree_iter_unlock(iter);
+ down_read(&c->gc_lock);
+
+ if (btree_iter_linked(iter))
+ ret = -EINTR;
+ }
+
+ /*
+ * XXX: figure out how far we might need to split,
+ * instead of locking/reserving all the way to the root:
+ */
+ if (!bch2_btree_iter_upgrade(iter, U8_MAX,
+ !(flags & BTREE_INSERT_NOUNLOCK))) {
+ ret = -EINTR;
+ goto out;
+ }
+
+ as = bch2_btree_update_start(c, iter->btree_id,
+ btree_update_reserve_required(c, b), flags,
+ !(flags & BTREE_INSERT_NOUNLOCK) ? &cl : NULL);
+ if (IS_ERR(as)) {
+ ret = PTR_ERR(as);
+ if (ret == -EAGAIN) {
+ BUG_ON(flags & BTREE_INSERT_NOUNLOCK);
+ bch2_btree_iter_unlock(iter);
+ ret = -EINTR;
+ }
+ goto out;
+ }
+
+ btree_split(as, b, iter, NULL, flags);
+ bch2_btree_update_done(as);
+
+ /*
+ * We haven't successfully inserted yet, so don't downgrade all the way
+ * back to read locks;
+ */
+ __bch2_btree_iter_downgrade(iter, 1);
+out:
+ up_read(&c->gc_lock);
+ closure_sync(&cl);
+ return ret;
+}
+
+void __bch2_foreground_maybe_merge(struct bch_fs *c,
+ struct btree_iter *iter,
+ unsigned level,
+ unsigned flags,
+ enum btree_node_sibling sib)
+{
+ struct btree_update *as;
+ struct bkey_format_state new_s;
+ struct bkey_format new_f;
+ struct bkey_i delete;
+ struct btree *b, *m, *n, *prev, *next, *parent;
+ struct closure cl;
+ size_t sib_u64s;
+ int ret = 0;
+
+ closure_init_stack(&cl);
+retry:
+ BUG_ON(!btree_node_locked(iter, level));
+
+ b = iter->l[level].b;
+
+ parent = btree_node_parent(iter, b);
+ if (!parent)
+ goto out;
+
+ if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c))
+ goto out;
+
+ /* XXX: can't be holding read locks */
+ m = bch2_btree_node_get_sibling(c, iter, b,
+ !(flags & BTREE_INSERT_NOUNLOCK), sib);
+ if (IS_ERR(m)) {
+ ret = PTR_ERR(m);
+ goto err;
+ }
+
+ /* NULL means no sibling: */
+ if (!m) {
+ b->sib_u64s[sib] = U16_MAX;
+ goto out;
+ }
+
+ if (sib == btree_prev_sib) {
+ prev = m;
+ next = b;
+ } else {
+ prev = b;
+ next = m;
+ }
+
+ bch2_bkey_format_init(&new_s);
+ __bch2_btree_calc_format(&new_s, b);
+ __bch2_btree_calc_format(&new_s, m);
+ new_f = bch2_bkey_format_done(&new_s);
+
+ sib_u64s = btree_node_u64s_with_format(b, &new_f) +
+ btree_node_u64s_with_format(m, &new_f);
+
+ if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
+ sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
+ sib_u64s /= 2;
+ sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
+ }
+
+ sib_u64s = min(sib_u64s, btree_max_u64s(c));
+ b->sib_u64s[sib] = sib_u64s;
+
+ if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c)) {
+ six_unlock_intent(&m->lock);
+ goto out;
+ }
+
+ /* We're changing btree topology, doesn't mix with gc: */
+ if (!down_read_trylock(&c->gc_lock))
+ goto err_cycle_gc_lock;
+
+ if (!bch2_btree_iter_upgrade(iter, U8_MAX,
+ !(flags & BTREE_INSERT_NOUNLOCK))) {
+ ret = -EINTR;
+ goto err_unlock;
+ }
+
+ as = bch2_btree_update_start(c, iter->btree_id,
+ btree_update_reserve_required(c, parent) + 1,
+ BTREE_INSERT_NOFAIL|
+ BTREE_INSERT_USE_RESERVE,
+ !(flags & BTREE_INSERT_NOUNLOCK) ? &cl : NULL);
+ if (IS_ERR(as)) {
+ ret = PTR_ERR(as);
+ goto err_unlock;
+ }
+
+ trace_btree_merge(c, b);
+
+ bch2_btree_interior_update_will_free_node(as, b);
+ bch2_btree_interior_update_will_free_node(as, m);
+
+ n = bch2_btree_node_alloc(as, b->level);
+
+ n->data->min_key = prev->data->min_key;
+ n->data->max_key = next->data->max_key;
+ n->data->format = new_f;
+ n->key.k.p = next->key.k.p;
+
+ btree_node_set_format(n, new_f);
+
+ bch2_btree_sort_into(c, n, prev);
+ bch2_btree_sort_into(c, n, next);
+
+ bch2_btree_build_aux_trees(n);
+ six_unlock_write(&n->lock);
+
+ bkey_init(&delete.k);
+ delete.k.p = prev->key.k.p;
+ bch2_keylist_add(&as->parent_keys, &delete);
+ bch2_keylist_add(&as->parent_keys, &n->key);
+
+ bch2_btree_node_write(c, n, SIX_LOCK_intent);
+
+ bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
+
+ bch2_btree_open_bucket_put(c, n);
+ bch2_btree_node_free_inmem(c, b, iter);
+ bch2_btree_node_free_inmem(c, m, iter);
+ bch2_btree_iter_node_replace(iter, n);
+
+ bch2_btree_iter_verify(iter, n);
+
+ bch2_btree_update_done(as);
+
+ six_unlock_intent(&m->lock);
+ up_read(&c->gc_lock);
+out:
+ /*
+ * Don't downgrade locks here: we're called after successful insert,
+ * and the caller will downgrade locks after a successful insert
+ * anyways (in case e.g. a split was required first)
+ *
+ * And we're also called when inserting into interior nodes in the
+ * split path, and downgrading to read locks in there is potentially
+ * confusing:
+ */
+ closure_sync(&cl);
+ return;
+
+err_cycle_gc_lock:
+ six_unlock_intent(&m->lock);
+
+ if (flags & BTREE_INSERT_NOUNLOCK)
+ goto out;
+
+ bch2_btree_iter_unlock(iter);
+
+ down_read(&c->gc_lock);
+ up_read(&c->gc_lock);
+ ret = -EINTR;
+ goto err;
+
+err_unlock:
+ six_unlock_intent(&m->lock);
+ up_read(&c->gc_lock);
+err:
+ BUG_ON(ret == -EAGAIN && (flags & BTREE_INSERT_NOUNLOCK));
+
+ if ((ret == -EAGAIN || ret == -EINTR) &&
+ !(flags & BTREE_INSERT_NOUNLOCK)) {
+ bch2_btree_iter_unlock(iter);
+ closure_sync(&cl);
+ ret = bch2_btree_iter_traverse(iter);
+ if (ret)
+ goto out;
+
+ goto retry;
+ }
+
+ goto out;
+}
+
+static int __btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter,
+ struct btree *b, unsigned flags,
+ struct closure *cl)
+{
+ struct btree *n, *parent = btree_node_parent(iter, b);
+ struct btree_update *as;
+
+ as = bch2_btree_update_start(c, iter->btree_id,
+ (parent
+ ? btree_update_reserve_required(c, parent)
+ : 0) + 1,
+ flags, cl);
+ if (IS_ERR(as)) {
+ trace_btree_gc_rewrite_node_fail(c, b);
+ return PTR_ERR(as);
+ }
+
+ bch2_btree_interior_update_will_free_node(as, b);
+
+ n = bch2_btree_node_alloc_replacement(as, b);
+
+ bch2_btree_build_aux_trees(n);
+ six_unlock_write(&n->lock);
+
+ trace_btree_gc_rewrite_node(c, b);
+
+ bch2_btree_node_write(c, n, SIX_LOCK_intent);
+
+ if (parent) {
+ bch2_keylist_add(&as->parent_keys, &n->key);
+ bch2_btree_insert_node(as, parent, iter, &as->parent_keys, flags);
+ } else {
+ bch2_btree_set_root(as, n, iter);
+ }
+
+ bch2_btree_open_bucket_put(c, n);
+
+ bch2_btree_node_free_inmem(c, b, iter);
+
+ bch2_btree_iter_node_replace(iter, n);
+
+ bch2_btree_update_done(as);
+ return 0;
+}
+
+/**
+ * bch_btree_node_rewrite - Rewrite/move a btree node
+ *
+ * Returns 0 on success, -EINTR or -EAGAIN on failure (i.e.
+ * btree_check_reserve() has to wait)
+ */
+int bch2_btree_node_rewrite(struct bch_fs *c, struct btree_iter *iter,
+ __le64 seq, unsigned flags)
+{
+ struct closure cl;
+ struct btree *b;
+ int ret;
+
+ flags |= BTREE_INSERT_NOFAIL;
+
+ closure_init_stack(&cl);
+
+ bch2_btree_iter_upgrade(iter, U8_MAX, true);
+
+ if (!(flags & BTREE_INSERT_GC_LOCK_HELD)) {
+ if (!down_read_trylock(&c->gc_lock)) {
+ bch2_btree_iter_unlock(iter);
+ down_read(&c->gc_lock);
+ }
+ }
+
+ while (1) {
+ ret = bch2_btree_iter_traverse(iter);
+ if (ret)
+ break;
+
+ b = bch2_btree_iter_peek_node(iter);
+ if (!b || b->data->keys.seq != seq)
+ break;
+
+ ret = __btree_node_rewrite(c, iter, b, flags, &cl);
+ if (ret != -EAGAIN &&
+ ret != -EINTR)
+ break;
+
+ bch2_btree_iter_unlock(iter);
+ closure_sync(&cl);
+ }
+
+ bch2_btree_iter_downgrade(iter);
+
+ if (!(flags & BTREE_INSERT_GC_LOCK_HELD))
+ up_read(&c->gc_lock);
+
+ closure_sync(&cl);
+ return ret;
+}
+
+static void __bch2_btree_node_update_key(struct bch_fs *c,
+ struct btree_update *as,
+ struct btree_iter *iter,
+ struct btree *b, struct btree *new_hash,
+ struct bkey_i_extent *new_key)
+{
+ struct btree *parent;
+ int ret;
+
+ /*
+ * Two corner cases that need to be thought about here:
+ *
+ * @b may not be reachable yet - there might be another interior update
+ * operation waiting on @b to be written, and we're gonna deliver the
+ * write completion to that interior update operation _before_
+ * persisting the new_key update
+ *
+ * That ends up working without us having to do anything special here:
+ * the reason is, we do kick off (and do the in memory updates) for the
+ * update for @new_key before we return, creating a new interior_update
+ * operation here.
+ *
+ * The new interior update operation here will in effect override the
+ * previous one. The previous one was going to terminate - make @b
+ * reachable - in one of two ways:
+ * - updating the btree root pointer
+ * In that case,
+ * no, this doesn't work. argh.
+ */
+
+ if (b->will_make_reachable)
+ as->must_rewrite = true;
+
+ btree_interior_update_add_node_reference(as, b);
+
+ parent = btree_node_parent(iter, b);
+ if (parent) {
+ if (new_hash) {
+ bkey_copy(&new_hash->key, &new_key->k_i);
+ ret = bch2_btree_node_hash_insert(&c->btree_cache,
+ new_hash, b->level, b->btree_id);
+ BUG_ON(ret);
+ }
+
+ bch2_keylist_add(&as->parent_keys, &new_key->k_i);
+ bch2_btree_insert_node(as, parent, iter, &as->parent_keys, 0);
+
+ if (new_hash) {
+ mutex_lock(&c->btree_cache.lock);
+ bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
+
+ bch2_btree_node_hash_remove(&c->btree_cache, b);
+
+ bkey_copy(&b->key, &new_key->k_i);
+ ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
+ BUG_ON(ret);
+ mutex_unlock(&c->btree_cache.lock);
+ } else {
+ bkey_copy(&b->key, &new_key->k_i);
+ }
+ } else {
+ struct bch_fs_usage stats = { 0 };
+
+ BUG_ON(btree_node_root(c, b) != b);
+
+ bch2_btree_node_lock_write(b, iter);
+
+ bch2_mark_key(c, bkey_i_to_s_c(&new_key->k_i),
+ c->opts.btree_node_size, true,
+ gc_pos_btree_root(b->btree_id),
+ &stats, 0, 0);
+ bch2_btree_node_free_index(as, NULL,
+ bkey_i_to_s_c(&b->key),
+ &stats);
+ bch2_fs_usage_apply(c, &stats, &as->reserve->disk_res,
+ gc_pos_btree_root(b->btree_id));
+
+ if (PTR_HASH(&new_key->k_i) != PTR_HASH(&b->key)) {
+ mutex_lock(&c->btree_cache.lock);
+ bch2_btree_node_hash_remove(&c->btree_cache, b);
+
+ bkey_copy(&b->key, &new_key->k_i);
+ ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
+ BUG_ON(ret);
+ mutex_unlock(&c->btree_cache.lock);
+ } else {
+ bkey_copy(&b->key, &new_key->k_i);
+ }
+
+ btree_update_updated_root(as);
+ bch2_btree_node_unlock_write(b, iter);
+ }
+
+ bch2_btree_update_done(as);
+}
+
+int bch2_btree_node_update_key(struct bch_fs *c, struct btree_iter *iter,
+ struct btree *b, struct bkey_i_extent *new_key)
+{
+ struct btree *parent = btree_node_parent(iter, b);
+ struct btree_update *as = NULL;
+ struct btree *new_hash = NULL;
+ struct closure cl;
+ int ret;
+
+ closure_init_stack(&cl);
+
+ if (!bch2_btree_iter_upgrade(iter, U8_MAX, true))
+ return -EINTR;
+
+ if (!down_read_trylock(&c->gc_lock)) {
+ bch2_btree_iter_unlock(iter);
+ down_read(&c->gc_lock);
+
+ if (!bch2_btree_iter_relock(iter)) {
+ ret = -EINTR;
+ goto err;
+ }
+ }
+
+ /* check PTR_HASH() after @b is locked by btree_iter_traverse(): */
+ if (PTR_HASH(&new_key->k_i) != PTR_HASH(&b->key)) {
+ /* bch2_btree_reserve_get will unlock */
+ ret = bch2_btree_cache_cannibalize_lock(c, &cl);
+ if (ret) {
+ ret = -EINTR;
+
+ bch2_btree_iter_unlock(iter);
+ up_read(&c->gc_lock);
+ closure_sync(&cl);
+ down_read(&c->gc_lock);
+
+ if (!bch2_btree_iter_relock(iter))
+ goto err;
+ }
+
+ new_hash = bch2_btree_node_mem_alloc(c);
+ }
+
+ as = bch2_btree_update_start(c, iter->btree_id,
+ parent ? btree_update_reserve_required(c, parent) : 0,
+ BTREE_INSERT_NOFAIL|
+ BTREE_INSERT_USE_RESERVE|
+ BTREE_INSERT_USE_ALLOC_RESERVE,
+ &cl);
+
+ if (IS_ERR(as)) {
+ ret = PTR_ERR(as);
+ if (ret == -EAGAIN)
+ ret = -EINTR;
+
+ if (ret != -EINTR)
+ goto err;
+
+ bch2_btree_iter_unlock(iter);
+ up_read(&c->gc_lock);
+ closure_sync(&cl);
+ down_read(&c->gc_lock);
+
+ if (!bch2_btree_iter_relock(iter))
+ goto err;
+ }
+
+ ret = bch2_mark_bkey_replicas(c, BCH_DATA_BTREE,
+ extent_i_to_s_c(new_key).s_c);
+ if (ret)
+ goto err_free_update;
+
+ __bch2_btree_node_update_key(c, as, iter, b, new_hash, new_key);
+
+ bch2_btree_iter_downgrade(iter);
+err:
+ if (new_hash) {
+ mutex_lock(&c->btree_cache.lock);
+ list_move(&new_hash->list, &c->btree_cache.freeable);
+ mutex_unlock(&c->btree_cache.lock);
+
+ six_unlock_write(&new_hash->lock);
+ six_unlock_intent(&new_hash->lock);
+ }
+ up_read(&c->gc_lock);
+ closure_sync(&cl);
+ return ret;
+err_free_update:
+ bch2_btree_update_free(as);
+ goto err;
+}
+
+/* Init code: */
+
+/*
+ * Only for filesystem bringup, when first reading the btree roots or allocating
+ * btree roots when initializing a new filesystem:
+ */
+void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
+{
+ BUG_ON(btree_node_root(c, b));
+
+ __bch2_btree_set_root_inmem(c, b);
+ bch2_btree_set_root_ondisk(c, b, READ);
+}
+
+void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
+{
+ struct closure cl;
+ struct btree *b;
+ int ret;
+
+ closure_init_stack(&cl);
+
+ do {
+ ret = bch2_btree_cache_cannibalize_lock(c, &cl);
+ closure_sync(&cl);
+ } while (ret);
+
+ b = bch2_btree_node_mem_alloc(c);
+ bch2_btree_cache_cannibalize_unlock(c);
+
+ set_btree_node_fake(b);
+ b->level = 0;
+ b->btree_id = id;
+
+ bkey_extent_init(&b->key);
+ b->key.k.p = POS_MAX;
+ bkey_i_to_extent(&b->key)->v._data[0] = U64_MAX - id;
+
+ bch2_bset_init_first(b, &b->data->keys);
+ bch2_btree_build_aux_trees(b);
+
+ b->data->min_key = POS_MIN;
+ b->data->max_key = POS_MAX;
+ b->data->format = bch2_btree_calc_format(b);
+ btree_node_set_format(b, b->data->format);
+
+ ret = bch2_btree_node_hash_insert(&c->btree_cache, b, b->level, b->btree_id);
+ BUG_ON(ret);
+
+ __bch2_btree_set_root_inmem(c, b);
+
+ six_unlock_write(&b->lock);
+ six_unlock_intent(&b->lock);
+}
+
+ssize_t bch2_btree_updates_print(struct bch_fs *c, char *buf)
+{
+ char *out = buf, *end = buf + PAGE_SIZE;
+ struct btree_update *as;
+
+ mutex_lock(&c->btree_interior_update_lock);
+ list_for_each_entry(as, &c->btree_interior_update_list, list)
+ out += scnprintf(out, end - out, "%p m %u w %u r %u j %llu\n",
+ as,
+ as->mode,
+ as->nodes_written,
+ atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK,
+ bch2_journal_pin_seq(&c->journal, &as->journal));
+ mutex_unlock(&c->btree_interior_update_lock);
+
+ return out - buf;
+}
+
+size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *c)
+{
+ size_t ret = 0;
+ struct list_head *i;
+
+ mutex_lock(&c->btree_interior_update_lock);
+ list_for_each(i, &c->btree_interior_update_list)
+ ret++;
+ mutex_unlock(&c->btree_interior_update_lock);
+
+ return ret;
+}