| Age | Commit message (Collapse) | Author | Files | Lines |
|
KVM x86 fixes for 6.18:
- Expand the KVM_PRE_FAULT_MEMORY selftest to add a regression test for the
bug fixed by commit 3ccbf6f47098 ("KVM: x86/mmu: Return -EAGAIN if userspace
deletes/moves memslot during prefault")
- Don't try to get PMU capabbilities from perf when running a CPU with hybrid
CPUs/PMUs, as perf will rightly WARN.
- Rework KVM_CAP_GUEST_MEMFD_MMAP (newly introduced in 6.18) into a more
generic KVM_CAP_GUEST_MEMFD_FLAGS
- Add a guest_memfd INIT_SHARED flag and require userspace to explicitly set
said flag to initialize memory as SHARED, irrespective of MMAP. The
behavior merged in 6.18 is that enabling mmap() implicitly initializes
memory as SHARED, which would result in an ABI collision for x86 CoCo VMs
as their memory is currently always initialized PRIVATE.
- Allow mmap() on guest_memfd for x86 CoCo VMs, i.e. on VMs with private
memory, to enable testing such setups, i.e. to hopefully flush out any
other lurking ABI issues before 6.18 is officially released.
- Add testcases to the guest_memfd selftest to cover guest_memfd without MMAP,
and host userspace accesses to mmap()'d private memory.
|
|
Allow mmap() on guest_memfd instances for x86 VMs with private memory as
the need to track private vs. shared state in the guest_memfd instance is
only pertinent to INIT_SHARED. Doing mmap() on private memory isn't
terrible useful (yet!), but it's now possible, and will be desirable when
guest_memfd gains support for other VMA-based syscalls, e.g. mbind() to
set NUMA policy.
Lift the restriction now, before MMAP support is officially released, so
that KVM doesn't need to add another capability to enumerate support for
mmap() on private memory.
Fixes: 3d3a04fad25a ("KVM: Allow and advertise support for host mmap() on guest_memfd files")
Reviewed-by: Ackerley Tng <ackerleytng@google.com>
Tested-by: Ackerley Tng <ackerleytng@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20251003232606.4070510-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv updates from Wei Liu:
- Unify guest entry code for KVM and MSHV (Sean Christopherson)
- Switch Hyper-V MSI domain to use msi_create_parent_irq_domain()
(Nam Cao)
- Add CONFIG_HYPERV_VMBUS and limit the semantics of CONFIG_HYPERV
(Mukesh Rathor)
- Add kexec/kdump support on Azure CVMs (Vitaly Kuznetsov)
- Deprecate hyperv_fb in favor of Hyper-V DRM driver (Prasanna
Kumar T S M)
- Miscellaneous enhancements, fixes and cleanups (Abhishek Tiwari,
Alok Tiwari, Nuno Das Neves, Wei Liu, Roman Kisel, Michael Kelley)
* tag 'hyperv-next-signed-20251006' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux:
hyperv: Remove the spurious null directive line
MAINTAINERS: Mark hyperv_fb driver Obsolete
fbdev/hyperv_fb: deprecate this in favor of Hyper-V DRM driver
Drivers: hv: Make CONFIG_HYPERV bool
Drivers: hv: Add CONFIG_HYPERV_VMBUS option
Drivers: hv: vmbus: Fix typos in vmbus_drv.c
Drivers: hv: vmbus: Fix sysfs output format for ring buffer index
Drivers: hv: vmbus: Clean up sscanf format specifier in target_cpu_store()
x86/hyperv: Switch to msi_create_parent_irq_domain()
mshv: Use common "entry virt" APIs to do work in root before running guest
entry: Rename "kvm" entry code assets to "virt" to genericize APIs
entry/kvm: KVM: Move KVM details related to signal/-EINTR into KVM proper
mshv: Handle NEED_RESCHED_LAZY before transferring to guest
x86/hyperv: Add kexec/kdump support on Azure CVMs
Drivers: hv: Simplify data structures for VMBus channel close message
Drivers: hv: util: Cosmetic changes for hv_utils_transport.c
mshv: Add support for a new parent partition configuration
clocksource: hyper-v: Skip unnecessary checks for the root partition
hyperv: Add missing field to hv_output_map_device_interrupt
|
|
Move KVM's morphing of pending signals into userspace exits into KVM
proper, and drop the @vcpu param from xfer_to_guest_mode_handle_work().
How KVM responds to -EINTR is a detail that really belongs in KVM itself,
and invoking kvm_handle_signal_exit() from kernel code creates an inverted
module dependency. E.g. attempting to move kvm_handle_signal_exit() into
kvm_main.c would generate an linker error when building kvm.ko as a module.
Dropping KVM details will also converting the KVM "entry" code into a more
generic virtualization framework so that it can be used when running as a
Hyper-V root partition.
Lastly, eliminating usage of "struct kvm_vcpu" outside of KVM is also nice
to have for KVM x86 developers, as keeping the details of kvm_vcpu purely
within KVM allows changing the layout of the structure without having to
boot into a new kernel, e.g. allows rebuilding and reloading kvm.ko with a
modified kvm_vcpu structure as part of debug/development.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
|
|
Rework almost all of KVM x86's exports to expose symbols only to KVM's
vendor modules, i.e. to kvm-{amd,intel}.ko. Keep the generic exports that
are guarded by CONFIG_KVM_EXTERNAL_WRITE_TRACKING=y, as they're explicitly
designed/intended for external usage.
Link: https://lore.kernel.org/r/20250919003303.1355064-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Drop the exporting of several kvm_arch_xxx() hooks that are only called
from arch-neutral code, i.e. that are only called from kvm.ko.
Link: https://lore.kernel.org/r/20250919003303.1355064-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM x86 CET virtualization support for 6.18
Add support for virtualizing Control-flow Enforcement Technology (CET) on
Intel (Shadow Stacks and Indirect Branch Tracking) and AMD (Shadow Stacks).
CET is comprised of two distinct features, Shadow Stacks (SHSTK) and Indirect
Branch Tracking (IBT), that can be utilized by software to help provide
Control-flow integrity (CFI). SHSTK defends against backward-edge attacks
(a.k.a. Return-oriented programming (ROP)), while IBT defends against
forward-edge attacks (a.k.a. similarly CALL/JMP-oriented programming (COP/JOP)).
Attackers commonly use ROP and COP/JOP methodologies to redirect the control-
flow to unauthorized targets in order to execute small snippets of code,
a.k.a. gadgets, of the attackers choice. By chaining together several gadgets,
an attacker can perform arbitrary operations and circumvent the system's
defenses.
SHSTK defends against backward-edge attacks, which execute gadgets by modifying
the stack to branch to the attacker's target via RET, by providing a second
stack that is used exclusively to track control transfer operations. The
shadow stack is separate from the data/normal stack, and can be enabled
independently in user and kernel mode.
When SHSTK is is enabled, CALL instructions push the return address on both the
data and shadow stack. RET then pops the return address from both stacks and
compares the addresses. If the return addresses from the two stacks do not
match, the CPU generates a Control Protection (#CP) exception.
IBT defends against backward-edge attacks, which branch to gadgets by executing
indirect CALL and JMP instructions with attacker controlled register or memory
state, by requiring the target of indirect branches to start with a special
marker instruction, ENDBRANCH. If an indirect branch is executed and the next
instruction is not an ENDBRANCH, the CPU generates a #CP. Note, ENDBRANCH
behaves as a NOP if IBT is disabled or unsupported.
From a virtualization perspective, CET presents several problems. While SHSTK
and IBT have two layers of enabling, a global control in the form of a CR4 bit,
and a per-feature control in user and kernel (supervisor) MSRs (U_CET and S_CET
respectively), the {S,U}_CET MSRs can be context switched via XSAVES/XRSTORS.
Practically speaking, intercepting and emulating XSAVES/XRSTORS is not a viable
option due to complexity, and outright disallowing use of XSTATE to context
switch SHSTK/IBT state would render the features unusable to most guests.
To limit the overall complexity without sacrificing performance or usability,
simply ignore the potential virtualization hole, but ensure that all paths in
KVM treat SHSTK/IBT as usable by the guest if the feature is supported in
hardware, and the guest has access to at least one of SHSTK or IBT. I.e. allow
userspace to advertise one of SHSTK or IBT if both are supported in hardware,
even though doing so would allow a misbehaving guest to use the unadvertised
feature.
Fully emulating SHSTK and IBT would also require significant complexity, e.g.
to track and update branch state for IBT, and shadow stack state for SHSTK.
Given that emulating large swaths of the guest code stream isn't necessary on
modern CPUs, punt on emulating instructions that meaningful impact or consume
SHSTK or IBT. However, instead of doing nothing, explicitly reject emulation
of such instructions so that KVM's emulator can't be abused to circumvent CET.
Disable support for SHSTK and IBT if KVM is configured such that emulation of
arbitrary guest instructions may be required, specifically if Unrestricted
Guest (Intel only) is disabled, or if KVM will emulate a guest.MAXPHYADDR that
is smaller than host.MAXPHYADDR.
Lastly disable SHSTK support if shadow paging is enabled, as the protections
for the shadow stack are novel (shadow stacks require Writable=0,Dirty=1, so
that they can't be directly modified by software), i.e. would require
non-trivial support in the Shadow MMU.
Note, AMD CPUs currently only support SHSTK. Explicitly disable IBT support
so that KVM doesn't over-advertise if AMD CPUs add IBT, and virtualizing IBT
in SVM requires KVM modifications.
|
|
KVM x86 changes for 6.18
- Don't (re)check L1 intercepts when completing userspace I/O to fix a flaw
where a misbehaving usersepace (a.k.a. syzkaller) could swizzle L1's
intercepts and trigger a variety of WARNs in KVM.
- Emulate PERF_CNTR_GLOBAL_STATUS_SET for PerfMonV2 guests, as the MSR is
supposed to exist for v2 PMUs.
- Allow Centaur CPU leaves (base 0xC000_0000) for Zhaoxin CPUs.
- Clean up KVM's vector hashing code for delivering lowest priority IRQs.
- Clean up the fastpath handler code to only handle IPIs and WRMSRs that are
actually "fast", as opposed to handling those that KVM _hopes_ are fast, and
in the process of doing so add fastpath support for TSC_DEADLINE writes on
AMD CPUs.
- Clean up a pile of PMU code in anticipation of adding support for mediated
vPMUs.
- Add support for the immediate forms of RDMSR and WRMSRNS, sans full
emulator support (KVM should never need to emulate the MSRs outside of
forced emulation and other contrived testing scenarios).
- Clean up the MSR APIs in preparation for CET and FRED virtualization, as
well as mediated vPMU support.
- Rejecting a fully in-kernel IRQCHIP if EOIs are protected, i.e. for TDX VMs,
as KVM can't faithfully emulate an I/O APIC for such guests.
- KVM_REQ_MSR_FILTER_CHANGED into a generic RECALC_INTERCEPTS in preparation
for mediated vPMU support, as KVM will need to recalculate MSR intercepts in
response to PMU refreshes for guests with mediated vPMUs.
- Misc cleanups and minor fixes.
|
|
KVM SVM changes for 6.18
- Require a minimum GHCB version of 2 when starting SEV-SNP guests via
KVM_SEV_INIT2 so that invalid GHCB versions result in immediate errors
instead of latent guest failures.
- Add support for Secure TSC for SEV-SNP guests, which prevents the untrusted
host from tampering with the guest's TSC frequency, while still allowing the
the VMM to configure the guest's TSC frequency prior to launch.
- Mitigate the potential for TOCTOU bugs when accessing GHCB fields by
wrapping all accesses via READ_ONCE().
- Validate the XCR0 provided by the guest (via the GHCB) to avoid tracking a
bogous XCR0 value in KVM's software model.
- Save an SEV guest's policy if and only if LAUNCH_START fully succeeds to
avoid leaving behind stale state (thankfully not consumed in KVM).
- Explicitly reject non-positive effective lengths during SNP's LAUNCH_UPDATE
instead of subtly relying on guest_memfd to do the "heavy" lifting.
- Reload the pre-VMRUN TSC_AUX on #VMEXIT for SEV-ES guests, not the host's
desired TSC_AUX, to fix a bug where KVM could clobber a different vCPU's
TSC_AUX due to hardware not matching the value cached in the user-return MSR
infrastructure.
- Enable AVIC by default for Zen4+ if x2AVIC (and other prereqs) is supported,
and clean up the AVIC initialization code along the way.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson into HEAD
LoongArch KVM changes for v6.18
1. Add PTW feature detection on new hardware.
2. Add sign extension with kernel MMIO/IOCSR emulation.
3. Improve in-kernel IPI emulation.
4. Improve in-kernel PCH-PIC emulation.
5. Move kvm_iocsr tracepoint out of generic code.
|
|
Add CET_KERNEL and CET_USER to KVM's set of supported XSS bits when IBT
*or* SHSTK is supported. Like CR4.CET, XFEATURE support for IBT and SHSTK
are bundle together under the CET umbrella, and thus prone to
virtualization holes if KVM or the guest supports only one of IBT or SHSTK,
but hardware supports both. However, again like CR4.CET, such
virtualization holes are benign from the host's perspective so long as KVM
takes care to always honor the "or" logic.
Require CET_KERNEL and CET_USER to come as a pair, and refuse to support
IBT or SHSTK if one (or both) features is missing, as the (host) kernel
expects them to come as a pair, i.e. may get confused and corrupt state if
only one of CET_KERNEL or CET_USER is supported.
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
[sean: split to separate patch, write changelog, add XFEATURE_MASK_CET_ALL]
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-26-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Emulate the Shadow Stack restriction that the current SSP must be a 32-bit
value on a FAR JMP from 64-bit mode to compatibility mode. From the SDM's
pseudocode for FAR JMP:
IF ShadowStackEnabled(CPL)
IF (IA32_EFER.LMA and DEST(segment selector).L) = 0
(* If target is legacy or compatibility mode then the SSP must be in low 4GB *)
IF (SSP & 0xFFFFFFFF00000000 != 0); THEN
#GP(0);
FI;
FI;
FI;
Note, only the current CPL needs to be considered, as FAR JMP can't be
used for inter-privilege level transfers, and KVM rejects emulation of all
other far branch instructions when Shadow Stacks are enabled.
To give the emulator access to GUEST_SSP, special case handling
MSR_KVM_INTERNAL_GUEST_SSP in emulator_get_msr() to treat the access as a
host access (KVM doesn't allow guest accesses to internal "MSRs"). The
->get_msr() API is only used for implicit accesses from the emulator, i.e.
is only used with hardcoded MSR indices, and so any access to
MSR_KVM_INTERNAL_GUEST_SSP is guaranteed to be from KVM, i.e. not from the
guest via RDMSR.
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-21-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Exit to userspace with KVM_INTERNAL_ERROR_EMULATION if the guest triggers
task switch emulation with Indirect Branch Tracking or Shadow Stacks
enabled, as attempting to do the right thing would require non-trivial
effort and complexity, KVM doesn't support emulating CET generally, and
it's extremely unlikely that any guest will do task switches while also
utilizing CET. Defer taking on the complexity until someone cares enough
to put in the time and effort to add support.
Per the SDM:
If shadow stack is enabled, then the SSP of the task is located at the
4 bytes at offset 104 in the 32-bit TSS and is used by the processor to
establish the SSP when a task switch occurs from a task associated with
this TSS. Note that the processor does not write the SSP of the task
initiating the task switch to the TSS of that task, and instead the SSP
of the previous task is pushed onto the shadow stack of the new task.
Note, per the SDM's pseudocode on TASK SWITCHING, IBT state for the new
privilege level is updated. To keep things simple, check both S_CET and
U_CET (again, anyone that wants more precise checking can have the honor
of implementing support).
Reported-by: Binbin Wu <binbin.wu@linux.intel.com>
Closes: https://lore.kernel.org/all/819bd98b-2a60-4107-8e13-41f1e4c706b1@linux.intel.com
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-20-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Save constant values to HOST_{S_CET,SSP,INTR_SSP_TABLE} field explicitly.
Kernel IBT is supported and the setting in MSR_IA32_S_CET is static after
post-boot(The exception is BIOS call case but vCPU thread never across it)
and KVM doesn't need to refresh HOST_S_CET field before every VM-Enter/
VM-Exit sequence.
Host supervisor shadow stack is not enabled now and SSP is not accessible
to kernel mode, thus it's safe to set host IA32_INT_SSP_TAB/SSP VMCS field
to 0s. When shadow stack is enabled for CPL3, SSP is reloaded from PL3_SSP
before it exits to userspace. Check SDM Vol 2A/B Chapter 3/4 for SYSCALL/
SYSRET/SYSENTER SYSEXIT/RDSSP/CALL etc.
Prevent KVM module loading if host supervisor shadow stack SHSTK_EN is set
in MSR_IA32_S_CET as KVM cannot co-exit with it correctly.
Suggested-by: Sean Christopherson <seanjc@google.com>
Suggested-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
[sean: snapshot host S_CET if SHSTK *or* IBT is supported]
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-18-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add emulation interface for CET MSR access. The emulation code is split
into common part and vendor specific part. The former does common checks
for MSRs, e.g., accessibility, data validity etc., then passes operation
to either XSAVE-managed MSRs via the helpers or CET VMCS fields.
SSP can only be read via RDSSP. Writing even requires destructive and
potentially faulting operations such as SAVEPREVSSP/RSTORSSP or
SETSSBSY/CLRSSBSY. Let the host use a pseudo-MSR that is just a wrapper
for the GUEST_SSP field of the VMCS.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
[sean: drop call to kvm_set_xstate_msr() for S_CET, consolidate code]
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-15-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a KVM-defined ONE_REG register, KVM_REG_GUEST_SSP, to let userspace
save and restore the guest's Shadow Stack Pointer (SSP). On both Intel
and AMD, SSP is a hardware register that can only be accessed by software
via dedicated ISA (e.g. RDSSP) or via VMCS/VMCB fields (used by hardware
to context switch SSP at entry/exit). As a result, SSP doesn't fit in
any of KVM's existing interfaces for saving/restoring state.
Internally, treat SSP as a fake/synthetic MSR, as the semantics of writes
to SSP follow that of several other Shadow Stack MSRs, e.g. the PLx_SSP
MSRs. Use a translation layer to hide the KVM-internal MSR index so that
the arbitrary index doesn't become ABI, e.g. so that KVM can rework its
implementation as needed, so long as the ONE_REG ABI is maintained.
Explicitly reject accesses to SSP if the vCPU doesn't have Shadow Stack
support to avoid running afoul of ignore_msrs, which unfortunately applies
to host-initiated accesses (which is a discussion for another day). I.e.
ensure consistent behavior for KVM-defined registers irrespective of
ignore_msrs.
Link: https://lore.kernel.org/all/aca9d389-f11e-4811-90cf-d98e345a5cc2@intel.com
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-14-seanjc@google.com
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add CET MSRs to the list of MSRs reported to userspace if the feature,
i.e. IBT or SHSTK, associated with the MSRs is supported by KVM.
Suggested-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-12-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Check potential faults for CR4.CET setting per Intel SDM requirements.
CET can be enabled if and only if CR0.WP == 1, i.e. setting CR4.CET ==
1 faults if CR0.WP == 0 and setting CR0.WP == 0 fails if CR4.CET == 1.
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Load the guest's FPU state if userspace is accessing MSRs whose values
are managed by XSAVES. Introduce two helpers, kvm_{get,set}_xstate_msr(),
to facilitate access to such kind of MSRs.
If MSRs supported in kvm_caps.supported_xss are passed through to guest,
the guest MSRs are swapped with host's before vCPU exits to userspace and
after it reenters kernel before next VM-entry.
Because the modified code is also used for the KVM_GET_MSRS device ioctl(),
explicitly check @vcpu is non-null before attempting to load guest state.
The XSAVE-managed MSRs cannot be retrieved via the device ioctl() without
loading guest FPU state (which doesn't exist).
Note that guest_cpuid_has() is not queried as host userspace is allowed to
access MSRs that have not been exposed to the guest, e.g. it might do
KVM_SET_MSRS prior to KVM_SET_CPUID2.
The two helpers are put here in order to manifest accessing xsave-managed
MSRs requires special check and handling to guarantee the correctness of
read/write to the MSRs.
Co-developed-by: Yang Weijiang <weijiang.yang@intel.com>
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
[sean: drop S_CET, add big comment, move accessors to x86.c]
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Xin Li (Intel) <xin@zytor.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Set original kvm_caps.supported_xss to (host_xss & KVM_SUPPORTED_XSS) if
XSAVES is supported. host_xss contains the host supported xstate feature
bits for thread FPU context switch, KVM_SUPPORTED_XSS includes all KVM
enabled XSS feature bits, the resulting value represents the supervisor
xstates that are available to guest and are backed by host FPU framework
for swapping {guest,host} XSAVE-managed registers/MSRs.
[sean: relocate and enhance comment about PT / XSS[8] ]
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Update CPUID.(EAX=0DH,ECX=1).EBX to reflect current required xstate size
due to XSS MSR modification.
CPUID(EAX=0DH,ECX=1).EBX reports the required storage size of all enabled
xstate features in (XCR0 | IA32_XSS). The CPUID value can be used by guest
before allocate sufficient xsave buffer.
Note, KVM does not yet support any XSS based features, i.e. supported_xss
is guaranteed to be zero at this time.
Opportunistically skip CPUID updates if XSS value doesn't change.
Suggested-by: Sean Christopherson <seanjc@google.com>
Co-developed-by: Zhang Yi Z <yi.z.zhang@linux.intel.com>
Signed-off-by: Zhang Yi Z <yi.z.zhang@linux.intel.com>
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Maintain per-guest valid XSS bits and check XSS validity against them
rather than against KVM capabilities. This is to prevent bits that are
supported by KVM but not supported for a guest from being set.
Opportunistically return KVM_MSR_RET_UNSUPPORTED on IA32_XSS MSR accesses
if guest CPUID doesn't enumerate X86_FEATURE_XSAVES. Since
KVM_MSR_RET_UNSUPPORTED takes care of host_initiated cases, drop the
host_initiated check.
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add MSR_IA32_XSS to list of MSRs reported to userspace if supported_xss
is non-zero, i.e. KVM supports at least one XSS based feature.
Before enabling CET virtualization series, guest IA32_MSR_XSS is
guaranteed to be 0, i.e., XSAVES/XRSTORS is executed in non-root mode
with XSS == 0, which equals to the effect of XSAVE/XRSTOR.
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Enable KVM_{G,S}ET_ONE_REG uAPIs so that userspace can access MSRs and
other non-MSR registers through them, along with support for
KVM_GET_REG_LIST to enumerate support for KVM-defined registers.
This is in preparation for allowing userspace to read/write the guest SSP
register, which is needed for the upcoming CET virtualization support.
Currently, two types of registers are supported: KVM_X86_REG_TYPE_MSR and
KVM_X86_REG_TYPE_KVM. All MSRs are in the former type; the latter type is
added for registers that lack existing KVM uAPIs to access them. The "KVM"
in the name is intended to be vague to give KVM flexibility to include
other potential registers. More precise names like "SYNTHETIC" and
"SYNTHETIC_MSR" were considered, but were deemed too confusing (e.g. can
be conflated with synthetic guest-visible MSRs) and may put KVM into a
corner (e.g. if KVM wants to change how a KVM-defined register is modeled
internally).
Enumerate only KVM-defined registers in KVM_GET_REG_LIST to avoid
duplicating KVM_GET_MSR_INDEX_LIST, and so that KVM can return _only_
registers that are fully supported (KVM_GET_REG_LIST is vCPU-scoped, i.e.
can be precise, whereas KVM_GET_MSR_INDEX_LIST is system-scoped).
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Link: https://lore.kernel.org/all/20240219074733.122080-18-weijiang.yang@intel.com [1]
Tested-by: Mathias Krause <minipli@grsecurity.net>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Merge the queue of SVM changes for 6.18 to pick up the KVM-defined GHCB
helpers so that kvm_ghcb_get_xss() can be used to virtualize CET for
SEV-ES+ guests.
|
|
In the user return MSR support, the cached value is always the hardware
value of the specific MSR. Therefore, add a helper to retrieve the
cached value, which can replace the need for RDMSR, for example, to
allow SEV-ES guests to restore the correct host hardware value without
using RDMSR.
Cc: stable@vger.kernel.org
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
[sean: drop "cache" from the name, make it a one-liner, tag for stable]
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20250923153738.1875174-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Use __kvm_set_xcr() to propagate XCR0 changes from the GHCB to KVM's
software model in order to validate the new XCR0 against KVM's view of
the supported XCR0. Allowing garbage is thankfully mostly benign, as
kvm_load_{guest,host}_xsave_state() bail early for vCPUs with protected
state, xstate_required_size() will simply provide garbage back to the
guest, and attempting to save/restore the bad value via KVM_{G,S}ET_XCRS
will only harm the guest (setting XCR0 will fail).
However, allowing the guest to put junk into a field that KVM assumes is
valid is a CVE waiting to happen. And as a bonus, using the proper API
eliminates the ugly open coding of setting arch.cpuid_dynamic_bits_dirty.
Simply ignore bad values, as either the guest managed to get an
unsupported value into hardware, or the guest is misbehaving and providing
pure garbage. In either case, KVM can't fix the broken guest.
Note, using __kvm_set_xcr() also avoids recomputing dynamic CPUID bits
if XCR0 isn't actually changing (relatively to KVM's previous snapshot).
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Fixes: 291bd20d5d88 ("KVM: SVM: Add initial support for a VMGEXIT VMEXIT")
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Rework the MSR_FILTER_CHANGED request into a more generic RECALC_INTERCEPTS
request, and expand the responsibilities of vendor code to recalculate all
intercepts that vary based on userspace input, e.g. instruction intercepts
that are tied to guest CPUID.
Providing a generic recalc request will allow the upcoming mediated PMU
support to trigger a recalc when PMU features, e.g. PERF_CAPABILITIES, are
set by userspace, without having to make multiple calls to/from PMU code.
As a bonus, using a request will effectively coalesce recalcs, e.g. will
reduce the number of recalcs for normal usage from 3+ to 1 (vCPU create,
set CPUID, set PERF_CAPABILITIES (Intel only), set filter).
The downside is that MSR filter changes that are done in isolation will do
a small amount of unnecessary work, but that's already a relatively slow
path, and the cost of recalculating instruction intercepts is negligible.
Tested-by: Xudong Hao <xudong.hao@intel.com>
Link: https://lore.kernel.org/r/20250806195706.1650976-25-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Reject KVM_CREATE_IRQCHIP if the VM type has protected EOIs, i.e. if KVM
can't intercept EOI and thus can't faithfully emulate level-triggered
interrupts that are routed through the I/O APIC. For TDX VMs, the
TDX-Module owns the VMX EOI-bitmap and configures all IRQ vectors to have
the CPU accelerate EOIs, i.e. doesn't allow KVM to intercept any EOIs.
KVM already requires a split irqchip[1], but does so during vCPU creation,
which is both too late to allow userspace to fallback to a split irqchip
and a less-than-stellar experience for userspace since an -EINVAL on
KVM_VCPU_CREATE is far harder to debug/triage than failure exactly on
KVM_CREATE_IRQCHIP. And of course, allowing an action that ultimately
fails is arguably a bug regardless of the impact on userspace.
Link: https://lore.kernel.org/lkml/20250222014757.897978-11-binbin.wu@linux.intel.com [1]
Link: https://lore.kernel.org/lkml/aK3vZ5HuKKeFuuM4@google.com
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sagi Shahar <sagis@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Acked-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20250827011726.2451115-1-sagis@google.com
[sean: massage shortlog+changelog, relocate setting has_protected_eoi]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull vmescape mitigation fixes from Dave Hansen:
"Mitigate vmscape issue with indirect branch predictor flushes.
vmscape is a vulnerability that essentially takes Spectre-v2 and
attacks host userspace from a guest. It particularly affects
hypervisors like QEMU.
Even if a hypervisor may not have any sensitive data like disk
encryption keys, guest-userspace may be able to attack the
guest-kernel using the hypervisor as a confused deputy.
There are many ways to mitigate vmscape using the existing Spectre-v2
defenses like IBRS variants or the IBPB flushes. This series focuses
solely on IBPB because it works universally across vendors and all
vulnerable processors. Further work doing vendor and model-specific
optimizations can build on top of this if needed / wanted.
Do the normal issue mitigation dance:
- Add the CPU bug boilerplate
- Add a list of vulnerable CPUs
- Use IBPB to flush the branch predictors after running guests"
* tag 'vmscape-for-linus-20250904' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vmscape: Add old Intel CPUs to affected list
x86/vmscape: Warn when STIBP is disabled with SMT
x86/bugs: Move cpu_bugs_smt_update() down
x86/vmscape: Enable the mitigation
x86/vmscape: Add conditional IBPB mitigation
x86/vmscape: Enumerate VMSCAPE bug
Documentation/hw-vuln: Add VMSCAPE documentation
|
|
Move the vector_hashing module param into lapic.c now that all usage is
contained within the local APIC emulation code.
Opportunistically drop the accessor and append "_enabled" to the variable
to help capture that it's a boolean module param.
No functional change intended.
Link: https://lore.kernel.org/r/20250821214209.3463350-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Introduce the core infrastructure to enable host userspace to mmap()
guest_memfd-backed memory. This is needed for several evolving KVM use
cases:
* Non-CoCo VM backing: Allows VMMs like Firecracker to run guests
entirely backed by guest_memfd, even for non-CoCo VMs [1]. This
provides a unified memory management model and simplifies guest memory
handling.
* Direct map removal for enhanced security: This is an important step
for direct map removal of guest memory [2]. By allowing host userspace
to fault in guest_memfd pages directly, we can avoid maintaining host
kernel direct maps of guest memory. This provides additional hardening
against Spectre-like transient execution attacks by removing a
potential attack surface within the kernel.
* Future guest_memfd features: This also lays the groundwork for future
enhancements to guest_memfd, such as supporting huge pages and
enabling in-place sharing of guest memory with the host for CoCo
platforms that permit it [3].
Enable the basic mmap and fault handling logic within guest_memfd, but
hold off on allow userspace to actually do mmap() until the architecture
support is also in place.
[1] https://github.com/firecracker-microvm/firecracker/tree/feature/secret-hiding
[2] https://lore.kernel.org/linux-mm/cc1bb8e9bc3e1ab637700a4d3defeec95b55060a.camel@amazon.com
[3] https://lore.kernel.org/all/c1c9591d-218a-495c-957b-ba356c8f8e09@redhat.com/T/#u
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shivank Garg <shivankg@amd.com>
Acked-by: David Hildenbrand <david@redhat.com>
Co-developed-by: Ackerley Tng <ackerleytng@google.com>
Signed-off-by: Ackerley Tng <ackerleytng@google.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20250729225455.670324-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Tweak the code a bit to facilitate resetting more xstate components in
the future, e.g., CET's xstate-managed MSRs.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Tested-by: John Allen <john.allen@amd.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
Tested-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Link: https://lore.kernel.org/r/20250812025606.74625-6-chao.gao@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Don't manually clear/zero MPX state on RESET, as the guest FPU state is
zero allocated and KVM only does RESET during vCPU creation, i.e. the
relevant state is guaranteed to be all zeroes.
Opportunistically move the relevant code into a helper in anticipation of
adding support for CET shadow stacks, which also has state that is zeroed
on INIT.
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Tested-by: John Allen <john.allen@amd.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
Tested-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Link: https://lore.kernel.org/r/20250812025606.74625-5-chao.gao@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Wrap __kvm_{get,set}_msr() into two new helpers for KVM usage and use the
helpers to replace existing usage of the raw functions.
kvm_msr_{read,write}() are KVM-internal helpers, i.e. used when KVM needs
to get/set a MSR value for emulating CPU behavior, i.e., host_initiated ==
%true in the helpers.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Tested-by: John Allen <john.allen@amd.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
Tested-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Link: https://lore.kernel.org/r/20250812025606.74625-4-chao.gao@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Use the double-underscore helpers for emulating MSR reads and writes in
he no-underscore versions to better capture the relationship between the
two sets of APIs (the double-underscore versions don't honor userspace MSR
filters).
No functional change intended.
Signed-off-by: Chao Gao <chao.gao@intel.com>
Tested-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Link: https://lore.kernel.org/r/20250812025606.74625-3-chao.gao@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Rename
kvm_{g,s}et_msr_with_filter()
kvm_{g,s}et_msr()
to
kvm_emulate_msr_{read,write}
__kvm_emulate_msr_{read,write}
to make it more obvious that KVM uses these helpers to emulate guest
behaviors, i.e., host_initiated == false in these helpers.
Suggested-by: Sean Christopherson <seanjc@google.com>
Suggested-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Yang Weijiang <weijiang.yang@intel.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Tested-by: John Allen <john.allen@amd.com>
Signed-off-by: Chao Gao <chao.gao@intel.com>
Tested-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Link: https://lore.kernel.org/r/20250812025606.74625-2-chao.gao@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add support for handling "WRMSRNS with an immediate" VM-Exits in KVM's
fastpath. On Intel, all writes to the x2APIC ICR and to the TSC Deadline
MSR are non-serializing, i.e. it's highly likely guest kernels will switch
to using WRMSRNS when possible. And in general, any MSR written via
WRMSRNS is probably worth handling in the fastpath, as the entire point of
WRMSRNS is to shave cycles in hot paths.
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
[sean: rewrite changelog, split rename to separate patch]
Link: https://lore.kernel.org/r/20250805202224.1475590-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add support for the immediate forms of RDMSR and WRMSRNS (currently
Intel-only). The immediate variants are only valid in 64-bit mode, and
use a single general purpose register for the data (the register is also
encoded in the instruction, i.e. not implicit like regular RDMSR/WRMSR).
The immediate variants are primarily motivated by performance, not code
size: by having the MSR index in an immediate, it is available *much*
earlier in the CPU pipeline, which allows hardware much more leeway about
how a particular MSR is handled.
Intel VMX support for the immediate forms of MSR accesses communicates
exit information to the host as follows:
1) The immediate form of RDMSR uses VM-Exit Reason 84.
2) The immediate form of WRMSRNS uses VM-Exit Reason 85.
3) For both VM-Exit reasons 84 and 85, the Exit Qualification field is
set to the MSR index that triggered the VM-Exit.
4) Bits 3 ~ 6 of the VM-Exit Instruction Information field are set to
the register encoding used by the immediate form of the instruction,
i.e. the destination register for RDMSR, and the source for WRMSRNS.
5) The VM-Exit Instruction Length field records the size of the
immediate form of the MSR instruction.
To deal with userspace RDMSR exits, stash the destination register in a
new kvm_vcpu_arch field, similar to cui_linear_rip, pio, etc.
Alternatively, the register could be saved in kvm_run.msr or re-retrieved
from the VMCS, but the former would require sanitizing the value to ensure
userspace doesn't clobber the value to an out-of-bounds index, and the
latter would require a new one-off kvm_x86_ops hook.
Don't bother adding support for the instructions in KVM's emulator, as the
only way for RDMSR/WRMSR to be encountered is if KVM is emulating large
swaths of code due to invalid guest state, and a vCPU cannot have invalid
guest state while in 64-bit mode.
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
[sean: minor tweaks, massage and expand changelog]
Link: https://lore.kernel.org/r/20250805202224.1475590-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Rename the WRMSR fastpath API to drop "irqoff", as that information is
redundant (the fastpath always runs with IRQs disabled), and to prepare
for adding a fastpath for the immediate variant of WRMSRNS.
No functional change intended.
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
[sean: split to separate patch, write changelog]
Link: https://lore.kernel.org/r/20250805202224.1475590-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Rename "ecx" variables in {RD,WR}MSR and RDPMC helpers to "msr" and "pmc"
respectively, in anticipation of adding support for the immediate variants
of RDMSR and WRMSRNS, and to better document what the variables hold
(versus where the data originated).
No functional change intended.
Link: https://lore.kernel.org/r/20250805202224.1475590-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a fastpath handler for INVD so that the common fastpath logic can be
trivially tested on both Intel and AMD. Under KVM, INVD is always:
(a) intercepted, (b) available to the guest, and (c) emulated as a nop,
with no side effects. Combined with INVD not having any inputs or outputs,
i.e. no register constraints, INVD is the perfect instruction for
exercising KVM's fastpath as it can be inserted into practically any
guest-side code stream.
Link: https://lore.kernel.org/r/20250805190526.1453366-19-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Acquire SRCU in the VM-Exit fastpath if and only if KVM needs to check the
PMU event filter, to further trim the amount of code that is executed with
SRCU protection in the fastpath. Counter-intuitively, holding SRCU can do
more harm than good due to masking potential bugs, and introducing a new
SRCU-protected asset to code reachable via kvm_skip_emulated_instruction()
would be quite notable, i.e. definitely worth auditing.
E.g. the primary user of kvm->srcu is KVM's memslots, accessing memslots
all but guarantees guest memory may be accessed, accessing guest memory
can fault, and page faults might sleep, which isn't allowed while IRQs are
disabled. Not acquiring SRCU means the (hypothetical) illegal sleep would
be flagged when running with PROVE_RCU=y, even if DEBUG_ATOMIC_SLEEP=n.
Note, performance is NOT a motivating factor, as SRCU lock/unlock only
adds ~15 cycles of latency to fastpath VM-Exits. I.e. overhead isn't a
concern _if_ SRCU protection needs to be extended beyond PMU events, e.g.
to honor userspace MSR filters.
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20250805190526.1453366-18-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add wrappers for triggering instruction retired and branch retired PMU
events in anticipation of reworking the internal mechanisms to track
which PMCs need to be evaluated, e.g. to avoid having to walk and check
every PMC.
Opportunistically bury "struct kvm_pmu_emulated_event_selectors" in pmu.c.
No functional change intended.
Link: https://lore.kernel.org/r/20250805190526.1453366-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Fold the per-MSR WRMSR fastpath helpers into the main handler now that the
IPI path in particular is relatively tiny. In addition to eliminating a
decent amount of boilerplate, this removes the ugly -errno/1/0 => bool
conversion (which is "necessitated" by kvm_x2apic_icr_write_fast()).
Opportunistically drop the comment about IPIs, as the purpose of the
fastpath is hopefully self-evident, and _if_ it needs more documentation,
the documentation (and rules!) should be placed in a more central location.
No functional change intended.
Link: https://lore.kernel.org/r/20250805190526.1453366-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Always grab EDX:EAX in the WRMSR fastpath to deduplicate and simplify the
case statements, and to prepare for handling immediate variants of WRMSRNS
in the fastpath (the data register is explicitly provided in that case).
There's no harm in reading the registers, as their values are always
available, i.e. don't require VMREADs (or similarly slow operations).
No real functional change intended.
Cc: Xin Li <xin@zytor.com>
Link: https://lore.kernel.org/r/20250805190526.1453366-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Acquire SRCU in the WRMSR fastpath if and only if an instruction needs to
be skipped, i.e. only if the fastpath succeeds. The reasoning in commit
3f2739bd1e0b ("KVM: x86: Acquire SRCU read lock when handling fastpath MSR
writes") about "avoid having to play whack-a-mole" seems sound, but in
hindsight unconditionally acquiring SRCU does more harm than good.
While acquiring/releasing SRCU isn't slow per se, the things that are
_protected_ by kvm->srcu are generally safe to access only in the "slow"
VM-Exit path. E.g. accessing memslots in generic helpers is never safe,
because accessing guest memory with IRQs disabled is unless unsafe (except
when kvm_vcpu_read_guest_atomic() is used, but that API should never be
used in emulation helpers).
In other words, playing whack-a-mole is actually desirable in this case,
because every access to an asset protected by kvm->srcu warrants further
scrutiny.
Link: https://lore.kernel.org/r/20250805190526.1453366-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop the fastpath VM-Exit requirement that KVM can use the hypervisor
timer to emulate the APIC timer in TSC deadline mode. I.e. unconditionally
handle MSR_IA32_TSC_DEADLINE WRMSRs in the fastpath. Restricting the
fastpath to *maybe* using the VMX preemption timer is ineffective and
unnecessary.
If the requested deadline can't be programmed into the VMX preemption
timer, KVM will fall back to hrtimers, i.e. the restriction is ineffective
as far as preventing any kind of worst case scenario.
But guarding against a worst case scenario is completely unnecessary as
the "slow" path, start_sw_tscdeadline() => hrtimer_start(), explicitly
disables IRQs. In fact, the worst case scenario is when KVM thinks it
can use the VMX preemption timer, as KVM will eat the overhead of calling
into vmx_set_hv_timer() and falling back to hrtimers.
Opportunistically limit kvm_can_use_hv_timer() to lapic.c as the fastpath
code was the only external user.
Stating the obvious, this allows handling MSR_IA32_TSC_DEADLINE writes in
the fastpath on AMD CPUs.
Link: https://lore.kernel.org/r/20250805190526.1453366-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Drop the restrictions on fastpath IPIs only working for fixed IRQs with a
physical destination now that the fastpath is explicitly limited to "fast"
delivery. Limiting delivery to a single physical APIC ID guarantees only
one vCPU will receive the event, but that isn't necessary "fast", e.g. if
the targeted vCPU is the last of 4096 vCPUs. And logical destination mode
or shorthand (to self) can also be fast, e.g. if only a few vCPUs are
being targeted. Lastly, there's nothing inherently slow about delivering
an NMI, INIT, SIPI, SMI, etc., i.e. there's no reason to artificially
limit fastpath delivery to fixed vector IRQs.
Link: https://lore.kernel.org/r/20250805190526.1453366-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Explicitly restrict fastpath ICR writes to IPIs that are "fast", i.e. can
be delivered without having to walk all vCPUs, and that target at most 16
vCPUs. Artificially restricting ICR writes to physical mode guarantees
at most one vCPU will receive in IPI (because x2APIC IDs are read-only),
but that delivery might not be "fast". E.g. even if the vCPU exists, KVM
might have to iterate over 4096 vCPUs to find the right one.
Limiting delivery to fast IPIs aligns the WRMSR fastpath with
kvm_arch_set_irq_inatomic() (which also runs with IRQs disabled), and will
allow dropping the semi-arbitrary restrictions on delivery mode and type.
Link: https://lore.kernel.org/r/20250805190526.1453366-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|