| Age | Commit message (Collapse) | Author | Files | Lines |
|
It is possible to hit a zero entry while traversing the vmas in unuse_mm()
called from swapoff path and accessing it causes the OOPS:
Unable to handle kernel NULL pointer dereference at virtual address
0000000000000446--> Loading the memory from offset 0x40 on the
XA_ZERO_ENTRY as address.
Mem abort info:
ESR = 0x0000000096000005
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x05: level 1 translation fault
The issue is manifested from the below race between the fork() on a
process and swapoff:
fork(dup_mmap()) swapoff(unuse_mm)
--------------- -----------------
1) Identical mtree is built using
__mt_dup().
2) copy_pte_range()-->
copy_nonpresent_pte():
The dst mm is added into the
mmlist to be visible to the
swapoff operation.
3) Fatal signal is sent to the parent
process(which is the current during the
fork) thus skip the duplication of the
vmas and mark the vma range with
XA_ZERO_ENTRY as a marker for this process
that helps during exit_mmap().
4) swapoff is tried on the
'mm' added to the 'mmlist' as
part of the 2.
5) unuse_mm(), that iterates
through the vma's of this 'mm'
will hit the non-NULL zero entry
and operating on this zero entry
as a vma is resulting into the
oops.
The proper fix would be around not exposing this partially-valid tree to
others when droping the mmap lock, which is being solved with [1]. A
simpler solution would be checking for MMF_UNSTABLE, as it is set if
mm_struct is not fully initialized in dup_mmap().
Thanks to Liam/Lorenzo/David for all the suggestions in fixing this
issue.
Link: https://lkml.kernel.org/r/20250924181138.1762750-1-charan.kalla@oss.qualcomm.com
Link: https://lore.kernel.org/all/20250815191031.3769540-1-Liam.Howlett@oracle.com/ [1]
Fixes: d24062914837 ("fork: use __mt_dup() to duplicate maple tree in dup_mmap()")
Signed-off-by: Charan Teja Kalla <charan.kalla@oss.qualcomm.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <kasong@tencent.com>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Peng Zhang <zhangpeng.00@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We have a cluster size of 512 slots. Each slot consumes 8 bytes in swap
table so the swap table size of each cluster is exactly one page (4K).
If that condition is true, allocate one page direct and disable the slab
cache to reduce the memory usage of swap table and avoid fragmentation.
Link: https://lkml.kernel.org/r/20250916160100.31545-16-ryncsn@gmail.com
Co-developed-by: Chris Li <chrisl@kernel.org>
Signed-off-by: Chris Li <chrisl@kernel.org>
Signed-off-by: Kairui Song <kasong@tencent.com>
Acked-by: Chris Li <chrisl@kernel.org>
Suggested-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Barry Song <baohua@kernel.org>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Now swap table is cluster based, which means free clusters can free its
table since no one should modify it.
There could be speculative readers, like swap cache look up, protect them
by making them RCU protected. All swap table should be filled with null
entries before free, so such readers will either see a NULL pointer or a
null filled table being lazy freed.
On allocation, allocate the table when a cluster is used by any order.
This way, we can reduce the memory usage of large swap device
significantly.
This idea to dynamically release unused swap cluster data was initially
suggested by Chris Li while proposing the cluster swap allocator and it
suits the swap table idea very well.
Link: https://lkml.kernel.org/r/20250916160100.31545-15-ryncsn@gmail.com
Co-developed-by: Chris Li <chrisl@kernel.org>
Signed-off-by: Chris Li <chrisl@kernel.org>
Signed-off-by: Kairui Song <kasong@tencent.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Barry Song <baohua@kernel.org>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Swap cluster setup will try to shuffle the clusters on initialization. It
was helpful to avoid contention for the swap cache space. The cluster
size (2M) was much smaller than each swap cache space (64M), so shuffling
the cluster means the allocator will try to allocate swap slots that are
in different swap cache spaces for each CPU, reducing the chance of two
CPUs using the same swap cache space, and hence reducing the contention.
Now, swap cache is managed by swap clusters, this shuffle is pointless.
Just remove it, and clean up related macros.
This also improves the HDD swap performance as shuffling IO is a bad idea
for HDD, and now the shuffling is gone. Test have shown a ~40%
performance gain for HDD [1]:
Doing sequential swap in of 8G data using 8 processes with usemem, average
of 3 test runs:
Before: 1270.91 KB/s per process
After: 1849.54 KB/s per process
Link: https://lore.kernel.org/linux-mm/CAMgjq7AdauQ8=X0zeih2r21QoV=-WWj1hyBxLWRzq74n-C=-Ng@mail.gmail.com/ [1]
Link: https://lkml.kernel.org/r/20250916160100.31545-14-ryncsn@gmail.com
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202504241621.f27743ec-lkp@intel.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Acked-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Barry Song <baohua@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Introduce basic swap table infrastructures, which are now just a
fixed-sized flat array inside each swap cluster, with access wrappers.
Each cluster contains a swap table of 512 entries. Each table entry is an
opaque atomic long. It could be in 3 types: a shadow type (XA_VALUE), a
folio type (pointer), or NULL.
In this first step, it only supports storing a folio or shadow, and it is
a drop-in replacement for the current swap cache. Convert all swap cache
users to use the new sets of APIs. Chris Li has been suggesting using a
new infrastructure for swap cache for better performance, and that idea
combined well with the swap table as the new backing structure. Now the
lock contention range is reduced to 2M clusters, which is much smaller
than the 64M address_space. And we can also drop the multiple
address_space design.
All the internal works are done with swap_cache_get_* helpers. Swap cache
lookup is still lock-less like before, and the helper's contexts are same
with original swap cache helpers. They still require a pin on the swap
device to prevent the backing data from being freed.
Swap cache updates are now protected by the swap cluster lock instead of
the XArray lock. This is mostly handled internally, but new
__swap_cache_* helpers require the caller to lock the cluster. So, a few
new cluster access and locking helpers are also introduced.
A fully cluster-based unified swap table can be implemented on top of this
to take care of all count tracking and synchronization work, with dynamic
allocation. It should reduce the memory usage while making the
performance even better.
Link: https://lkml.kernel.org/r/20250916160100.31545-12-ryncsn@gmail.com
Co-developed-by: Chris Li <chrisl@kernel.org>
Signed-off-by: Chris Li <chrisl@kernel.org>
Signed-off-by: Kairui Song <kasong@tencent.com>
Acked-by: Chris Li <chrisl@kernel.org>
Suggested-by: Chris Li <chrisl@kernel.org>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <baohua@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In preparation for replacing the swap cache backend with the swap table,
clean up and add proper kernel doc for all swap cache APIs. Now all swap
cache APIs are well-defined with consistent names.
No feature change, only renaming and documenting.
Link: https://lkml.kernel.org/r/20250916160100.31545-9-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Acked-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Barry Song <baohua@kernel.org>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: David Hildenbrand <david@redhat.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
swp_swap_info is the most commonly used helper for retrieving swap info.
It has an internal check that may lead to a NULL return value, but almost
none of its caller checks the return value, making the internal check
pointless. In fact, most of these callers already ensured the entry is
valid and never expect a NULL value.
Tidy this up and improve the function names. If the caller can make sure
the swap entry/type is valid and the device is pinned, use the new
introduced __swap_entry_to_info/__swap_type_to_info instead. They have
more debug sanity checks and lower overhead as they are inlined.
Callers that may expect a NULL value should use
swap_entry_to_info/swap_type_to_info instead.
No feature change. The rearranged codes should have had no effect, or
they should have been hitting NULL de-ref bugs already. Only some new
sanity checks are added so potential issues may show up in debug build.
The new helpers will be frequently used with swap table later when working
with swap cache folios. A locked swap cache folio ensures the entries are
valid and stable so these helpers are very helpful.
Link: https://lkml.kernel.org/r/20250916160100.31545-8-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Acked-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Barry Song <baohua@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
No feature change, move cluster related definitions and helpers to
mm/swap.h, also tidy up and add a "swap_" prefix for cluster lock/unlock
helpers, so they can be used outside of swap files. And while at it, add
kerneldoc.
Link: https://lkml.kernel.org/r/20250916160100.31545-7-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Acked-by: Chris Li <chrisl@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Swap cache lookup only increases the reference count of the returned
folio. That's not enough to ensure a folio is stable in the swap cache,
so the folio could be removed from the swap cache at any time. The caller
should always lock and check the folio before using it.
We have just documented this in kerneldoc, now introduce a helper for swap
cache folio verification with proper sanity checks.
Also, sanitize a few current users to use this convention and the new
helper for easier debugging. They were not having observable problems
yet, only trivial issues like wasted CPU cycles on swapoff or reclaiming.
They would fail in some other way, but it is still better to always follow
this convention to make things robust and make later commits easier to do.
Link: https://lkml.kernel.org/r/20250916160100.31545-6-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Chris Li <chrisl@kernel.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Barry Song <baohua@kernel.org>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The allocator will reclaim cached slots while scanning. Currently, it
will try again if reclaim found a folio that is already removed from the
swap cache due to a race. But the following lookup will be using the
wrong index. It won't cause any OOB issue since the swap cache index is
truncated upon lookup, but it may lead to reclaiming of an irrelevant
folio.
This should not cause a measurable issue, but we should fix it.
Link: https://lkml.kernel.org/r/20250916160100.31545-4-ryncsn@gmail.com
Fixes: fae859550531 ("mm, swap: avoid reclaiming irrelevant swap cache")
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Chris Li <chrisl@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <baohua@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The swap cache lookup helper swap_cache_get_folio currently does readahead
updates as well, so callers that are not doing swapin from any VMA or
mapping are forced to reuse filemap helpers instead, and have to access
the swap cache space directly.
So decouple readahead update with swap cache lookup. Move the readahead
update part into a standalone helper. Let the caller call the readahead
update helper if they do readahead. And convert all swap cache lookups to
use swap_cache_get_folio.
After this commit, there are only three special cases for accessing swap
cache space now: huge memory splitting, migration, and shmem replacing,
because they need to lock the XArray. The following commits will wrap
their accesses to the swap cache too, with special helpers.
And worth noting, currently dropbehind is not supported for anon folio,
and we will never see a dropbehind folio in swap cache. The unified
helper can be updated later to handle that.
While at it, add proper kernedoc for touched helpers.
No functional change.
Link: https://lkml.kernel.org/r/20250916160100.31545-3-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Chris Li <chrisl@kernel.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Suggested-by: Chris Li <chrisl@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: kernel test robot <oliver.sang@intel.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm/swapfile.c and swap.h cleanup", v3.
This patch series, which builds on Kairui's swap improve cluster scan series.
https://lore.kernel.org/linux-mm/20250806161748.76651-1-ryncsn@gmail.com/
It introduces a new function, alloc_swap_scan_list(), for swapfile.c.
It also cleans up swap.h by removing comments that reference fields that
have been deleted.
There are no functional changes in this two-patch series.
This patch (of 2):
alloc_swap_scan_list() will scan the whole list or the first cluster.
This reduces the repeat patterns of isolating a cluster then scanning that
cluster. As a result, cluster_alloc_swap_entry() is shorter and
shallower.
No functional change.
Link: https://lkml.kernel.org/r/20250812-swap-scan-list-v3-0-6d73504d267b@kernel.org
Link: https://lkml.kernel.org/r/20250812-swap-scan-list-v3-1-6d73504d267b@kernel.org
Signed-off-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Kairui Song <kasong@tencent.com>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <baohua@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We prefer a free cluster over a nonfull cluster whenever a CPU local
cluster is drained to respect the SSD discard behavior [1]. It's not a
best practice for non-discarding devices. And this is causing a higher
fragmentation rate.
So for a non-discarding device, prefer nonfull over free clusters. This
reduces the fragmentation issue by a lot.
Testing with make -j96, defconfig, using 64k mTHP, 8G ZRAM:
Before: sys time: 6176.34s 64kB/swpout: 1659757 64kB/swpout_fallback: 139503
After: sys time: 6194.11s 64kB/swpout: 1689470 64kB/swpout_fallback: 56147
Testing with make -j96, defconfig, using 64k mTHP, 10G ZRAM:
After: sys time: 5531.49s 64kB/swpout: 1791142 64kB/swpout_fallback: 17676
After: sys time: 5587.53s 64kB/swpout: 1811598 64kB/swpout_fallback: 0
Performance is basically unchanged, and the large allocation failure rate
is lower. Enabling all mTHP sizes showed a more significant result.
Using the same test setup with 10G ZRAM and enabling all mTHP sizes:
128kB swap failure rate:
Before: swpout:451599 swpout_fallback:54525
After: swpout:502710 swpout_fallback:870
256kB swap failure rate:
Before: swpout:63652 swpout_fallback:2708
After: swpout:65913 swpout_fallback:20
512kB swap failure rate:
Before: swpout:11663 swpout_fallback:1767
After: swpout:14480 swpout_fallback:6
2M swap failure rate:
Before: swpout:24 swpout_fallback:1442
After: swpout:1329 swpout_fallback:7
The success rate of large allocations is much higher.
Link: https://lore.kernel.org/linux-mm/87v8242vng.fsf@yhuang6-desk2.ccr.corp.intel.com/ [1]
Link: https://lkml.kernel.org/r/20250806161748.76651-4-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Acked-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <baohua@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It was used for calculating the iteration number when the swap allocator
wants to scan the whole fragment list. Now the allocator only scans one
fragment cluster at a time, so no one uses this counter anymore.
Remove it as a cleanup; the performance change is marginal:
Build linux kernel using 10G ZRAM, make -j96, defconfig with 2G cgroup
memory limit, on top of tmpfs, 64kB mTHP enabled:
Before: sys time: 6278.45s
After: sys time: 6176.34s
Change to 8G ZRAM:
Before: sys time: 5572.85s
After: sys time: 5531.49s
Link: https://lkml.kernel.org/r/20250806161748.76651-3-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Chris Li <chrisl@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <baohua@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm, swap: improve cluster scan strategy", v2.
This series improves the large allocation performance and reduces the
failure rate. Some design of the cluster alloactor was later found to be
improvable after thorough testing.
The allocator spent too much effort scanning the fragment list, which is
not helpful in most setups, but causes serious contention of the list lock
(si->lock). Besides, the allocator prefers free clusters when searching
for a new cluster due to historical reasons, which causes fragmentation
issues.
So make the allocator only scan one cluster for high order allocation, and
prefer nonfull cluster. This both improves the performance and reduces
fragmentation.
For example, build kernel test with make -j96 and 10G ZRAM with 64kB mTHP
enabled shows better performance and a lower failure rate:
Before: sys time: 11609.69s 64kB/swpout: 1787051 64kB/swpout_fallback: 20917
After: sys time: 5587.53s 64kB/swpout: 1811598 64kB/swpout_fallback: 0
System time is cut in half, and the failure rate drops to zero. Larger
allocations in a hybrid workload also showed a major improvement:
512kB swap failure rate:
Before: swpout:11663 swpout_fallback:1767
After: swpout:14480 swpout_fallback:6
2M swap failure rate:
Before: swpout:24 swpout_fallback:1442
After: swpout:1329 swpout_fallback:7
This patch (of 3):
Fragment clusters were mostly failing high order allocation already. The
reason we scan it through now is that a swap slot may get freed without
releasing the swap cache, so a swap map entry will end up in HAS_CACHE
only status, and the cluster won't be moved back to non-full or free
cluster list. This may cause a higher allocation failure rate.
Usually only !SWP_SYNCHRONOUS_IO devices may have a large number of slots
stuck in HAS_CACHE only status. Because when a !SWP_SYNCHRONOUS_IO
device's usage is low (!vm_swap_full()), it will try to lazy free the swap
cache.
But this fragment list scan out is a bit overkill. Fragmentation is
only an issue for the allocator when the device is getting full, and by
that time, swap will be releasing the swap cache aggressively already.
Only scanning one fragment cluster at a time is good enough to reclaim
already pinned slots, and move the cluster back to nonfull.
And besides, only high order allocation requires iterating over the list,
order 0 allocation will succeed on the first attempt. And high order
allocation failure isn't a serious problem.
So the iteration of fragment clusters is trivial, but it will slow down
large allocation by a lot when the fragment cluster list is long. So it's
better to drop this fragment cluster iteration design.
Test on a 48c96t system, build linux kernel using 10G ZRAM, make -j48,
defconfig with 768M cgroup memory limit, on top of tmpfs, 4K folio only:
Before: sys time: 4432.56s
After: sys time: 4430.18s
Change to make -j96, 2G memory limit, 64kB mTHP enabled, and 10G ZRAM:
Before: sys time: 11609.69s 64kB/swpout: 1787051 64kB/swpout_fallback: 20917
After: sys time: 5572.85s 64kB/swpout: 1797612 64kB/swpout_fallback: 19254
Change to 8G ZRAM:
Before: sys time: 21524.35s 64kB/swpout: 1687142 64kB/swpout_fallback: 128496
After: sys time: 6278.45s 64kB/swpout: 1679127 64kB/swpout_fallback: 130942
Change to use 10G brd device with SWP_SYNCHRONOUS_IO flag removed:
Before: sys time: 7393.50s 64kB/swpout:1788246 swpout_fallback: 0
After: sys time: 7399.88s 64kB/swpout:1784257 swpout_fallback: 0
Change to use 8G brd device with SWP_SYNCHRONOUS_IO flag removed:
Before: sys time: 26292.26s 64kB/swpout:1645236 swpout_fallback: 138945
After: sys time: 9463.16s 64kB/swpout:1581376 swpout_fallback: 259979
The performance is a lot better for large folios, and the large order
allocation failure rate is only very slightly higher or unchanged even
for !SWP_SYNCHRONOUS_IO devices high pressure.
Link: https://lkml.kernel.org/r/20250806161748.76651-1-ryncsn@gmail.com
Link: https://lkml.kernel.org/r/20250806161748.76651-2-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Chris Li <chrisl@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <baohua@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
As cluster_next_cpu was already dropped, the associated comment is stale
now.
Link: https://lkml.kernel.org/r/20250522122554.12209-5-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In setup_swap_map(), we only ensure badpages are in range (0, last_page].
As maxpages might be < last_page, setup_clusters() will encounter a buffer
overflow when a badpage is >= maxpages.
Only call inc_cluster_info_page() for badpage which is < maxpages to fix
the issue.
Link: https://lkml.kernel.org/r/20250522122554.12209-4-shikemeng@huaweicloud.com
Fixes: b843786b0bd0 ("mm: swapfile: fix SSD detection with swapfile on btrfs")
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kairui Song <kasong@tencent.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We use maxpages from read_swap_header() to initialize swap_info_struct,
however the maxpages might be reduced in setup_swap_extents() and the
si->max is assigned with the reduced maxpages from the
setup_swap_extents().
Obviously, this could lead to memory waste as we allocated memory based on
larger maxpages, besides, this could lead to a potential deadloop as
following:
1) When calling setup_clusters() with larger maxpages, unavailable
pages within range [si->max, larger maxpages) are not accounted with
inc_cluster_info_page(). As a result, these pages are assumed
available but can not be allocated. The cluster contains these pages
can be moved to frag_clusters list after it's all available pages were
allocated.
2) When the cluster mentioned in 1) is the only cluster in
frag_clusters list, cluster_alloc_swap_entry() assume order 0
allocation will never failed and will enter a deadloop by keep trying
to allocate page from the only cluster in frag_clusters which contains
no actually available page.
Call setup_swap_extents() to get the final maxpages before
swap_info_struct initialization to fix the issue.
After this change, span will include badblocks and will become large
value which I think is correct value:
In summary, there are two kinds of swapfile_activate operations.
1. Filesystem style: Treat all blocks logical continuity and find
usable physical extents in logical range. In this way, si->pages will
be actual usable physical blocks and span will be "1 + highest_block -
lowest_block".
2. Block device style: Treat all blocks physically continue and only
one single extent is added. In this way, si->pages will be si->max and
span will be "si->pages - 1". Actually, si->pages and si->max is only
used in block device style and span value is set with si->pages. As a
result, span value in block device style will become a larger value as
you mentioned.
I think larger value is correct based on:
1. Span value in filesystem style is "1 + highest_block -
lowest_block" which is the range cover all possible phisical blocks
including the badblocks.
2. For block device style, si->pages is the actual usable block number
and is already in pr_info. The original span value before this patch
is also refer to usable block number which is redundant in pr_info.
[shikemeng@huaweicloud.com: ensure si->pages == si->max - 1 after setup_swap_extents()]
Link: https://lkml.kernel.org/r/20250522122554.12209-3-shikemeng@huaweicloud.com
Link: https://lkml.kernel.org/r/20250718065139.61989-1-shikemeng@huaweicloud.com
Link: https://lkml.kernel.org/r/20250522122554.12209-3-shikemeng@huaweicloud.com
Fixes: 661383c6111a ("mm: swap: relaim the cached parts that got scanned")
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kairui Song <kasong@tencent.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
swap_range_alloc()
Patch series "Some randome fixes and cleanups to swapfile".
Patch 0-3 are some random fixes. Patch 4 is a cleanup. More details can
be found in respective patches.
This patch (of 4):
When folio_alloc_swap() encounters a failure in either
mem_cgroup_try_charge_swap() or add_to_swap_cache(), nr_swap_pages counter
is not decremented for allocated entry. However, the following
put_swap_folio() will increase nr_swap_pages counter unpairly and lead to
an imbalance.
Move nr_swap_pages decrement from folio_alloc_swap() to swap_range_alloc()
to pair the nr_swap_pages counting.
Link: https://lkml.kernel.org/r/20250522122554.12209-1-shikemeng@huaweicloud.com
Link: https://lkml.kernel.org/r/20250522122554.12209-2-shikemeng@huaweicloud.com
Fixes: 0ff67f990bd4 ("mm, swap: remove swap slot cache")
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- "Add folio_mk_pte()" from Matthew Wilcox simplifies the act of
creating a pte which addresses the first page in a folio and reduces
the amount of plumbing which architecture must implement to provide
this.
- "Misc folio patches for 6.16" from Matthew Wilcox is a shower of
largely unrelated folio infrastructure changes which clean things up
and better prepare us for future work.
- "memory,x86,acpi: hotplug memory alignment advisement" from Gregory
Price adds early-init code to prevent x86 from leaving physical
memory unused when physical address regions are not aligned to memory
block size.
- "mm/compaction: allow more aggressive proactive compaction" from
Michal Clapinski provides some tuning of the (sadly, hard-coded (more
sadly, not auto-tuned)) thresholds for our invokation of proactive
compaction. In a simple test case, the reduction of a guest VM's
memory consumption was dramatic.
- "Minor cleanups and improvements to swap freeing code" from Kemeng
Shi provides some code cleaups and a small efficiency improvement to
this part of our swap handling code.
- "ptrace: introduce PTRACE_SET_SYSCALL_INFO API" from Dmitry Levin
adds the ability for a ptracer to modify syscalls arguments. At this
time we can alter only "system call information that are used by
strace system call tampering, namely, syscall number, syscall
arguments, and syscall return value.
This series should have been incorporated into mm.git's "non-MM"
branch, but I goofed.
- "fs/proc: extend the PAGEMAP_SCAN ioctl to report guard regions" from
Andrei Vagin extends the info returned by the PAGEMAP_SCAN ioctl
against /proc/pid/pagemap. This permits CRIU to more efficiently get
at the info about guard regions.
- "Fix parameter passed to page_mapcount_is_type()" from Gavin Shan
implements that fix. No runtime effect is expected because
validate_page_before_insert() happens to fix up this error.
- "kernel/events/uprobes: uprobe_write_opcode() rewrite" from David
Hildenbrand basically brings uprobe text poking into the current
decade. Remove a bunch of hand-rolled implementation in favor of
using more current facilities.
- "mm/ptdump: Drop assumption that pxd_val() is u64" from Anshuman
Khandual provides enhancements and generalizations to the pte dumping
code. This might be needed when 128-bit Page Table Descriptors are
enabled for ARM.
- "Always call constructor for kernel page tables" from Kevin Brodsky
ensures that the ctor/dtor is always called for kernel pgtables, as
it already is for user pgtables.
This permits the addition of more functionality such as "insert hooks
to protect page tables". This change does result in various
architectures performing unnecesary work, but this is fixed up where
it is anticipated to occur.
- "Rust support for mm_struct, vm_area_struct, and mmap" from Alice
Ryhl adds plumbing to permit Rust access to core MM structures.
- "fix incorrectly disallowed anonymous VMA merges" from Lorenzo
Stoakes takes advantage of some VMA merging opportunities which we've
been missing for 15 years.
- "mm/madvise: batch tlb flushes for MADV_DONTNEED and MADV_FREE" from
SeongJae Park optimizes process_madvise()'s TLB flushing.
Instead of flushing each address range in the provided iovec, we
batch the flushing across all the iovec entries. The syscall's cost
was approximately halved with a microbenchmark which was designed to
load this particular operation.
- "Track node vacancy to reduce worst case allocation counts" from
Sidhartha Kumar makes the maple tree smarter about its node
preallocation.
stress-ng mmap performance increased by single-digit percentages and
the amount of unnecessarily preallocated memory was dramaticelly
reduced.
- "mm/gup: Minor fix, cleanup and improvements" from Baoquan He removes
a few unnecessary things which Baoquan noted when reading the code.
- ""Enhance sysfs handling for memory hotplug in weighted interleave"
from Rakie Kim "enhances the weighted interleave policy in the memory
management subsystem by improving sysfs handling, fixing memory
leaks, and introducing dynamic sysfs updates for memory hotplug
support". Fixes things on error paths which we are unlikely to hit.
- "mm/damon: auto-tune DAMOS for NUMA setups including tiered memory"
from SeongJae Park introduces new DAMOS quota goal metrics which
eliminate the manual tuning which is required when utilizing DAMON
for memory tiering.
- "mm/vmalloc.c: code cleanup and improvements" from Baoquan He
provides cleanups and small efficiency improvements which Baoquan
found via code inspection.
- "vmscan: enforce mems_effective during demotion" from Gregory Price
changes reclaim to respect cpuset.mems_effective during demotion when
possible. because presently, reclaim explicitly ignores
cpuset.mems_effective when demoting, which may cause the cpuset
settings to violated.
This is useful for isolating workloads on a multi-tenant system from
certain classes of memory more consistently.
- "Clean up split_huge_pmd_locked() and remove unnecessary folio
pointers" from Gavin Guo provides minor cleanups and efficiency gains
in in the huge page splitting and migrating code.
- "Use kmem_cache for memcg alloc" from Huan Yang creates a slab cache
for `struct mem_cgroup', yielding improved memory utilization.
- "add max arg to swappiness in memory.reclaim and lru_gen" from
Zhongkun He adds a new "max" argument to the "swappiness=" argument
for memory.reclaim MGLRU's lru_gen.
This directs proactive reclaim to reclaim from only anon folios
rather than file-backed folios.
- "kexec: introduce Kexec HandOver (KHO)" from Mike Rapoport is the
first step on the path to permitting the kernel to maintain existing
VMs while replacing the host kernel via file-based kexec. At this
time only memblock's reserve_mem is preserved.
- "mm: Introduce for_each_valid_pfn()" from David Woodhouse provides
and uses a smarter way of looping over a pfn range. By skipping
ranges of invalid pfns.
- "sched/numa: Skip VMA scanning on memory pinned to one NUMA node via
cpuset.mems" from Libo Chen removes a lot of pointless VMA scanning
when a task is pinned a single NUMA mode.
Dramatic performance benefits were seen in some real world cases.
- "JFS: Implement migrate_folio for jfs_metapage_aops" from Shivank
Garg addresses a warning which occurs during memory compaction when
using JFS.
- "move all VMA allocation, freeing and duplication logic to mm" from
Lorenzo Stoakes moves some VMA code from kernel/fork.c into the more
appropriate mm/vma.c.
- "mm, swap: clean up swap cache mapping helper" from Kairui Song
provides code consolidation and cleanups related to the folio_index()
function.
- "mm/gup: Cleanup memfd_pin_folios()" from Vishal Moola does that.
- "memcg: Fix test_memcg_min/low test failures" from Waiman Long
addresses some bogus failures which are being reported by the
test_memcontrol selftest.
- "eliminate mmap() retry merge, add .mmap_prepare hook" from Lorenzo
Stoakes commences the deprecation of file_operations.mmap() in favor
of the new file_operations.mmap_prepare().
The latter is more restrictive and prevents drivers from messing with
things in ways which, amongst other problems, may defeat VMA merging.
- "memcg: decouple memcg and objcg stocks"" from Shakeel Butt decouples
the per-cpu memcg charge cache from the objcg's one.
This is a step along the way to making memcg and objcg charging
NMI-safe, which is a BPF requirement.
- "mm/damon: minor fixups and improvements for code, tests, and
documents" from SeongJae Park is yet another batch of miscellaneous
DAMON changes. Fix and improve minor problems in code, tests and
documents.
- "memcg: make memcg stats irq safe" from Shakeel Butt converts memcg
stats to be irq safe. Another step along the way to making memcg
charging and stats updates NMI-safe, a BPF requirement.
- "Let unmap_hugepage_range() and several related functions take folio
instead of page" from Fan Ni provides folio conversions in the
hugetlb code.
* tag 'mm-stable-2025-05-31-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (285 commits)
mm: pcp: increase pcp->free_count threshold to trigger free_high
mm/hugetlb: convert use of struct page to folio in __unmap_hugepage_range()
mm/hugetlb: refactor __unmap_hugepage_range() to take folio instead of page
mm/hugetlb: refactor unmap_hugepage_range() to take folio instead of page
mm/hugetlb: pass folio instead of page to unmap_ref_private()
memcg: objcg stock trylock without irq disabling
memcg: no stock lock for cpu hot-unplug
memcg: make __mod_memcg_lruvec_state re-entrant safe against irqs
memcg: make count_memcg_events re-entrant safe against irqs
memcg: make mod_memcg_state re-entrant safe against irqs
memcg: move preempt disable to callers of memcg_rstat_updated
memcg: memcg_rstat_updated re-entrant safe against irqs
mm: khugepaged: decouple SHMEM and file folios' collapse
selftests/eventfd: correct test name and improve messages
alloc_tag: check mem_profiling_support in alloc_tag_init
Docs/damon: update titles and brief introductions to explain DAMOS
selftests/damon/_damon_sysfs: read tried regions directories in order
mm/damon/tests/core-kunit: add a test for damos_set_filters_default_reject()
mm/damon/paddr: remove unused variable, folio_list, in damon_pa_stat()
mm/damon/sysfs-schemes: fix wrong comment on damons_sysfs_quota_goal_metric_strs
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull final writepage conversion from Christian Brauner:
"This converts vboxfs from ->writepage() to ->writepages().
This was the last user of the ->writepage() method. So remove
->writepage() completely and all references to it"
* tag 'vfs-6.16-rc1.writepage' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
fs: Remove aops->writepage
mm: Remove swap_writepage() and shmem_writepage()
ttm: Call shmem_writeout() from ttm_backup_backup_page()
i915: Use writeback_iter()
shmem: Add shmem_writeout()
writeback: Remove writeback_use_writepage()
migrate: Remove call to ->writepage
vboxsf: Convert to writepages
9p: Add a migrate_folio method
|
|
This helper existed to fix the circular header dependency issue but it is
no longer used since commit 0d40cfe63a2f ("fs: remove
folio_file_mapping()"), remove it.
Link: https://lkml.kernel.org/r/20250430181052.55698-7-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Chris Li <chrisl@kernel.org>
Cc: Chris Mason <clm@fb.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Sterba <dsterba@suse.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Qu Wenruo <wqu@suse.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There are no remaining users of folio_index() outside the mm subsystem.
Move it to mm/swap.h to co-locate it with swap_cache_index(), eliminating
a forward declaration, and a function call overhead.
Also remove the helper that was used to fix circular header dependency
issue.
Link: https://lkml.kernel.org/r/20250430181052.55698-6-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Chris Li <chrisl@kernel.org>
Cc: Chris Mason <clm@fb.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Sterba <dsterba@suse.com>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Qu Wenruo <wqu@suse.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull vfs fixes from Christian Brauner:
- Ensure that simple_xattr_list() always includes security.* xattrs
- Fix eventpoll busy loop optimization when combined with timeouts
- Disable swapon() for devices with block sizes greater than page sizes
- Don't call errseq_set() twice during mark_buffer_write_io_error().
Just use mapping_set_error() which takes care to not deference
unconditionally
* tag 'vfs-6.15-rc7.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
fs: Remove redundant errseq_set call in mark_buffer_write_io_error.
swapfile: disable swapon for bs > ps devices
fs/eventpoll: fix endless busy loop after timeout has expired
fs/xattr.c: fix simple_xattr_list to always include security.* xattrs
|
|
Replace cluster_swap_free_nr() with swap_entries_put_[map/cache]() to
remove repeat code and leverage batch-remove for entries with last flag.
After removing cluster_swap_free_nr, only functions with "_nr" suffix
could free entries spanning cross clusters. Add corresponding description
in comment of swap_entries_put_map_nr() as is first function with "_nr"
suffix and have a non-suffix variant function swap_entries_put_map().
Link: https://lkml.kernel.org/r/20250325162528.68385-9-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Factor out helper swap_entries_put_cache() from put_swap_folio() to serve
as a general-purpose routine for dropping cache flag of entries within a
single cluster.
Link: https://lkml.kernel.org/r/20250325162528.68385-8-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
1. Factor out general swap_entries_put_map() helper to drop entries
belonging to one cluster. If entries are last map, free entries in
batch, otherwise put entries with cluster lock acquired and released
only once.
2. Iterate and call swap_entries_put_map() for each cluster in
swap_entries_put_nr() to leverage batch-remove for last map belonging
to one cluster and reduce lock acquire/release in fallback case.
3. As swap_entries_put_nr() won't handle SWAP_HSA_CACHE drop, rename
it to swap_entries_put_map_nr().
4. As we won't drop each entry invidually with swap_entry_put() now,
do reclaim in free_swap_and_cache_nr() because
swap_entries_put_map_nr() is general routine to drop reference and the
relcaim work should only be done in free_swap_and_cache_nr(). Remove
stale comment accordingly.
Link: https://lkml.kernel.org/r/20250325162528.68385-7-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The SWAP_MAP_SHMEM indicates last map from shmem. Therefore we can drop
SWAP_MAP_SHMEM in batch in similar way to drop last ref count in batch.
Link: https://lkml.kernel.org/r/20250325162528.68385-6-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Use swap_entries_free() to directly free swap entries when the swap
entries are not cached and referenced, without needing to set swap entries
to set intermediate SWAP_HAS_CACHE state.
Link: https://lkml.kernel.org/r/20250325162528.68385-5-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In swap_entry_put_locked(), we will set slot to SWAP_HAS_CACHE before
using swap_entries_free() to do actual swap entry freeing. This introduce
an unnecessary intermediate state. By using swap_entries_free() in
swap_entry_put_locked(), we can eliminate the need to set slot to
SWAP_HAS_CACHE. This change would make the behavior of
swap_entry_put_locked() more consistent with other put() operations which
will do actual free work after put last reference.
Link: https://lkml.kernel.org/r/20250325162528.68385-4-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The original VM_BUG_ON only allows swap_entry_range_free() to drop last
SWAP_HAS_CACHE ref. By allowing other kind of last ref in VM_BUG_ON,
swap_entry_range_free() could be a more general-purpose function able to
handle all kind of last ref. Following thi change, also rename
swap_entry_range_free() to swap_entries_free() and update it's comment
accordingly.
This is a preparation to use swap_entries_free() to drop more kind of last
ref other than SWAP_HAS_CACHE.
[shikemeng@huaweicloud.com: add __maybe_unused attribute for swap_is_last_ref() and update comment]
Link: https://lkml.kernel.org/r/20250410153908.612984-1-shikemeng@huaweicloud.com
Link: https://lkml.kernel.org/r/20250325162528.68385-3-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Tested-by: SeongJae Park <sj@kernel.org>
Cc: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
swap_[entry/entries]_put[_locked]
Patch series "Minor cleanups and improvements to swap freeing code", v4.
This series contains some cleanups and improvements which are made
during learning swapfile. Here is a summary of the changes:
1. Function naming improvments.
- Use "put" instead of "free" to name functions which only do actual
free when count drops to zero.
- Use "entry" to name function only frees one swap slot. Use
"entries" to name function could may free multi swap slots within one
cluster. Use "_nr" suffix to name function which could free multi
swap slots spanning cross multi clusters.
2. Eliminate the need to set swap slot to intermediate SWAP_HAS_CACHE
value before do actual free by using swap_entry_range_free()
3. Add helpers swap_entries_put_map() and swap_entries_put_cache() as
a general-purpose routine to free swap entries within a single cluster
which will try batch-remove first and fallback to put eatch entry
indvidually with cluster lock acquired/released only once. By using
these helpers, we could remove repeated code, levarage batch-remove in
more cases and aoivd to acquire/release cluster lock for each single
swap entry.
This patch (of 8):
In __swap_entry_free[_locked] and __swap_entries_free, we decrease count
first and only free swap entry if count drops to zero. This behavior is
more akin to a put() operation rather than a free() operation. Therefore,
rename these functions with "put" instead of "free". Additionally, add
"_nr" suffix to swap_entries_put to indicate the input range may span swap
clusters.
Link: https://lkml.kernel.org/r/20250325162528.68385-1-shikemeng@huaweicloud.com
Link: https://lkml.kernel.org/r/20250325162528.68385-2-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The !CONFIG_THP_SWAP check existed before just fine because slot cache
would reject high order allocation and let the caller split all folios and
try again.
But slot cache is gone, so large allocation will directly go to the
allocator, and the allocator should just fail silently to inform caller to
do the folio split, this is totally fine and expected.
Remove this meaningless warning.
Link: https://lkml.kernel.org/r/20250429094803.85518-1-ryncsn@gmail.com
Fixes: 0ff67f990bd4 ("mm, swap: remove swap slot cache")
Signed-off-by: Kairui Song <kasong@tencent.com>
Reported-by: Heiko Carstens <hca@linux.ibm.com>
Closes: https://lore.kernel.org/linux-mm/20250428135252.25453B17-hca@linux.ibm.com/
Tested-by: Heiko Carstens <hca@linux.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Devices which have a requirement for bs > ps cannot be supported for
swap as swap still needs work. Now that the block device cache sets the
min order for block devices we need this stop gap otherwise all
swap operations are rejected.
Without this you'll end up with errors on these devices as the swap
code still needs much love to support min order.
With this we at least now put a stop gap of its use, until the
swap subsystem completes its major overhaul:
mkswap: /dev/nvme3n1: warning: wiping old swap signature.
Setting up swapspace version 1, size = 100 GiB (107374178304 bytes)
no label, UUID=6af76b5c-7e7b-4902-b7f7-4c24dde6fa36
swapon: /dev/nvme3n1: swapon failed: Invalid argument
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Link: https://lore.kernel.org/aBkS926thy9zvdZb@bombadil.infradead.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Call swap_writeout() and shmem_writeout() from pageout() instead.
Signed-off-by: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Link: https://lore.kernel.org/r/20250402150005.2309458-9-willy@infradead.org
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
With slot cache gone, clean up the allocation helpers even more.
folio_alloc_swap will be the only entry for allocation and adding the
folio to swap cache (except suspend), making it opposite of
folio_free_swap.
Link: https://lkml.kernel.org/r/20250313165935.63303-8-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Slot cache is no longer needed now, removing it and all related code.
- vm-scalability with: `usemem --init-time -O -y -x -R -31 1G`,
12G memory cgroup using simulated pmem as SWAP (32G pmem, 32 CPUs),
16 test runs for each case, measuring the total throughput:
Before (KB/s) (stdev) After (KB/s) (stdev)
Random (4K): 424907.60 (24410.78) 414745.92 (34554.78)
Random (64K): 163308.82 (11635.72) 167314.50 (18434.99)
Sequential (4K, !-R): 6150056.79 (103205.90) 6321469.06 (115878.16)
The performance changes are below noise level.
- Build linux kernel with make -j96, using 4K folio with 1.5G memory
cgroup limit and 64K folio with 2G memory cgroup limit, on top of tmpfs,
12 test runs, measuring the system time:
Before (s) (stdev) After (s) (stdev)
make -j96 (4K): 6445.69 (61.95) 6408.80 (69.46)
make -j96 (64K): 6841.71 (409.04) 6437.99 (435.55)
Similar to above, 64k mTHP case showed a slight improvement.
Link: https://lkml.kernel.org/r/20250313165935.63303-7-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Current allocation workflow first traverses the plist with a global lock
held, after choosing a device, it uses the percpu cluster on that swap
device. This commit moves the percpu cluster variable out of being tied
to individual swap devices, making it a global percpu variable, and will
be used directly for allocation as a fast path.
The global percpu cluster variable will never point to a HDD device, and
allocations on a HDD device are still globally serialized.
This improves the allocator performance and prepares for removal of the
slot cache in later commits. There shouldn't be much observable behavior
change, except one thing: this changes how swap device allocation rotation
works.
Currently, each allocation will rotate the plist, and because of the
existence of slot cache (one order 0 allocation usually returns 64
entries), swap devices of the same priority are rotated for every 64 order
0 entries consumed. High order allocations are different, they will
bypass the slot cache, and so swap device is rotated for every 16K, 32K,
or up to 2M allocation.
The rotation rule was never clearly defined or documented, it was changed
several times without mentioning.
After this commit, and once slot cache is gone in later commits, swap
device rotation will happen for every consumed cluster. Ideally non-HDD
devices will be rotated if 2M space has been consumed for each order.
Fragmented clusters will rotate the device faster, which seems OK. HDD
devices is rotated for every allocation regardless of the allocation
order, which should be OK too and trivial.
This commit also slightly changes allocation behaviour for slot cache.
The new added cluster allocation fast path may allocate entries from
different device to the slot cache, this is not observable from user
space, only impact performance very slightly, and slot cache will be just
gone in next commit, so this can be ignored.
Link: https://lkml.kernel.org/r/20250313165935.63303-6-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The counter update before allocation design was useful to avoid
unnecessary scan when device is full, so it will abort early if the
counter indicates the device is full. But that is an uncommon case, and
now scanning of a full device is very fast, so the up-front update is not
helpful any more.
Remove it and simplify the slot allocation logic.
Link: https://lkml.kernel.org/r/20250313165935.63303-5-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This flag exists temporarily to allow the allocator to bypass the slot
cache during freeing, so reclaiming one slot will free the slot
immediately.
But now we have already removed slot cache usage on freeing, so this flag
has no effect now.
Link: https://lkml.kernel.org/r/20250313165935.63303-3-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm, swap: remove swap slot cache", v3.
Slot cache was initially introduced by commit 67afa38e012e ("mm/swap: add
cache for swap slots allocation") to reduce the lock contention of
si->lock.
Previous series "mm, swap: rework of swap allocator locks" [1] removed
swap slot cache for freeing path as freeing path no longer touches
si->lock in most cased. Allocation path also have slight to none
contention on si->lock since that series, but slot cache still helps to
reduce other overheads, like counters and the plist.
This series removes the slot cache from allocation path too, by using the
cluster as allocation fast path and also reduce other overheads.
Now slot cache is completely gone, the code is much simplified without
obvious feature or performance change, also clean up related workaround.
Also this should avoid other potential issues, e.g. the long pinning of
swap slots: swap slot cache pins swap slots with HAS_CACHE, causing
reclaim or allocation fail to use these slots on scanning.
The only behavior change is the swap device allocation rotation mechanism,
as explained in the patch "mm, swap: use percpu cluster as allocation fast
path".
Test results are looking good after deleting the swap slot cache:
- vm-scalability with: `usemem --init-time -O -y -x -R -31 1G`,
12G memory cgroup using simulated pmem as SWAP (32G pmem, 32 CPUs),
16 test runs for each case, measuring the total throughput:
Before (KB/s) (stdev) After (KB/s) (stdev)
Random (4K): 424907.60 (24410.78) 414745.92 (34554.78)
Random (64K): 163308.82 (11635.72) 167314.50 (18434.99)
Sequential (4K, !-R): 6150056.79 (103205.90) 6321469.06 (115878.16)
- Build linux kernel with make -j96, using 4K folio with 1.5G memory
cgroup limit and 64K folio with 2G memory cgroup limit, on top of tmpfs,
12 test runs, measuring the system time:
Before (s) (stdev) After (s) (stdev)
make -j96 (4K): 6445.69 (61.95) 6408.80 (69.46)
make -j96 (64K): 6841.71 (409.04) 6437.99 (435.55)
The performance is unchanged, slightly better in some cases.
[1] https://lore.kernel.org/linux-mm/20250113175732.48099-1-ryncsn@gmail.com/
This patch (of 7):
Swap allocator will do swap cache reclaim to recycle HAS_CACHE slots for
allocation. It initiates the reclaim from the offset to be reclaimed and
looks up the corresponding folio. The lookup process is lockless, so it's
possible the folio will be removed from the swap cache and given a
different swap entry before the reclaim locks the folio. If it happens,
the reclaim will end up reclaiming an irrelevant folio, and return wrong
return value.
This shouldn't cause any problem with correctness or stability, but it is
indeed confusing and unexpected, and will increase fragmentation, decrease
performance.
Fix this by checking whether the folio is still pointing to the offset the
allocator want to reclaim before reclaiming it.
Link: https://lkml.kernel.org/r/20250313165935.63303-1-ryncsn@gmail.com
Link: https://lkml.kernel.org/r/20250313165935.63303-2-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kairui Song <kasong@tencent.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
swap_reclaim_full_clusters() has no return value now, just remove the
stale comment which says swap_reclaim_full_clusters() wil return a bool
value.
Link: https://lkml.kernel.org/r/20250222160850.505274-7-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We will add si back to plist in swap_usage_sub(), just correct the wrong
comment which says we will remove si from plist in swap_usage_sub().
Link: https://lkml.kernel.org/r/20250222160850.505274-6-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Before alloc from a cluster, we will aqcuire cluster's lock and make sure
it is usable by cluster_is_usable(), so there is no need to set
SWAP_MAP_BAD for cluster to be discarded.
Link: https://lkml.kernel.org/r/20250222160850.505274-5-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It's only called in scan_swap_map_slots().
And also remove the stale code comment in scan_swap_map_slots() because
it's not fit for the current cluster allocation mechanism.
Link: https://lkml.kernel.org/r/20250205092721.9395-13-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Since commit eb085574a752 ("mm, swap: fix race between swapoff and some
swap operations"), the non_swap_entry() checking has been taken off from
function __swap_duplicate(). Hence, in the kernel-doc comment, the line
'swp_entry is migration entry -> EINVAL' is obsolete. Remove that line to
avoid misleading people.
Link: https://lkml.kernel.org/r/20250205092721.9395-12-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The new function name can reflect the real behaviour of the function more
clearly and more accurately. And the renaming avoids the confusion
between swap_swapcount() and swp_swapcount().
Link: https://lkml.kernel.org/r/20250205092721.9395-11-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In free_swap_and_cache_nr(), invocation of get_swap_device() has done the
checking if it's a swap entry. So remove the redundant checking here.
Link: https://lkml.kernel.org/r/20250205092721.9395-10-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In the last 'for' loop inside setup_clusters(), using two local variable
'k' and 'j' are obvisouly redundant. Using 'j' is enough and simpler.
And also move macro SWAP_CLUSTER_COLS close to its only user
setup_clusters().
Link: https://lkml.kernel.org/r/20250205092721.9395-8-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Now, swap_count_continued() has two callers, __swap_duplicate() and
__swap_entry_free_locked(), the relevant code comment is stale. Update it
to reflect the current situation.
[bhe@redhat.com: v2]
Link: https://lkml.kernel.org/r/Z6V0/UvG1fvkQ4t/@fedora
Link: https://lkml.kernel.org/r/20250205092721.9395-7-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|