aboutsummaryrefslogtreecommitdiffstats
path: root/t/helper/test-csprng.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2025-01-07wrapper: allow generating insecure random bytesPatrick Steinhardt1-1/+1
The `csprng_bytes()` function generates randomness and writes it into a caller-provided buffer. It abstracts over a couple of implementations, where the exact one that is used depends on the platform. These implementations have different guarantees: while some guarantee to never fail (arc4random(3)), others may fail. There are two significant failures to distinguish from one another: - Systemic failure, where e.g. opening "/dev/urandom" fails or when OpenSSL doesn't have a provider configured. - Entropy failure, where the entropy pool is exhausted, and thus the function cannot guarantee strong cryptographic randomness. While we cannot do anything about the former, the latter failure can be acceptable in some situations where we don't care whether or not the randomness can be predicted. Introduce a new `CSPRNG_BYTES_INSECURE` flag that allows callers to opt into weak cryptographic randomness. The exact behaviour of the flag depends on the underlying implementation: - `arc4random_buf()` never returns an error, so it doesn't change. - `getrandom()` pulls from "/dev/urandom" by default, which never blocks on modern systems even when the entropy pool is empty. - `getentropy()` seems to block when there is not enough randomness available, and there is no way of changing that behaviour. - `GtlGenRandom()` doesn't mention anything about its specific failure mode. - The fallback reads from "/dev/urandom", which also returns bytes in case the entropy pool is drained in modern Linux systems. That only leaves OpenSSL with `RAND_bytes()`, which returns an error in case the returned data wouldn't be cryptographically safe. This function is replaced with a call to `RAND_pseudo_bytes()`, which can indicate whether or not the returned data is cryptographically secure via its return value. If it is insecure, and if the `CSPRNG_BYTES_INSECURE` flag is set, then we ignore the insecurity and return the data regardless. It is somewhat questionable whether we really need the flag in the first place, or whether we wouldn't just ignore the potentially-insecure data. But the risk of doing that is that we might have or grow callsites that aren't aware of the potential insecureness of the data in places where it really matters. So using a flag to opt-in to that behaviour feels like the more secure choice. Signed-off-by: Patrick Steinhardt <ps@pks.im> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-12-06t/helper: don't depend on implicit wraparoundPatrick Steinhardt1-4/+1
In our test helpers we have two cases where we assign -1 to an `unsigned long`. The intent is to essentially mean "unbounded output", which is achieved via implicit wraparound of the value. This pattern causes warnings with -Wsign-compare though. Adapt it and instead use `ULONG_MAX` explicitly. Signed-off-by: Patrick Steinhardt <ps@pks.im> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-12-06global: mark code units that generate warnings with `-Wsign-compare`Patrick Steinhardt1-0/+2
Mark code units that generate warnings with `-Wsign-compare`. This allows for a structured approach to get rid of all such warnings over time in a way that can be easily measured. Signed-off-by: Patrick Steinhardt <ps@pks.im> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-01-17wrapper: add a helper to generate numbers from a CSPRNGbrian m. carlson1-0/+29
There are many situations in which having access to a cryptographically secure pseudorandom number generator (CSPRNG) is helpful. In the future, we'll encounter one of these when dealing with temporary files. To make this possible, let's add a function which reads from a system CSPRNG and returns some bytes. We know that all systems will have such an interface. A CSPRNG is required for a secure TLS or SSH implementation and a Git implementation which provided neither would be of little practical use. In addition, POSIX is set to standardize getentropy(2) in the next version, so in the (potentially distant) future we can rely on that. For systems which lack one of the other interfaces, we provide the ability to use OpenSSL's CSPRNG. OpenSSL is highly portable and functions on practically every known OS, and we know it will have access to some source of cryptographically secure randomness. We also provide support for the arc4random in libbsd for folks who would prefer to use that. Because this is a security sensitive interface, we take some precautions. We either succeed by filling the buffer completely as we requested, or we fail. We don't return partial data because the caller will almost never find that to be a useful behavior. Specify a makefile knob which users can use to specify one or more suitable CSPRNGs, and turn the multiple string options into a set of defines, since we cannot match on strings in the preprocessor. We allow multiple options to make the job of handling this in autoconf easier. The order of options is important here. On systems with arc4random, which is most of the BSDs, we use that, since, except on MirBSD and macOS, it uses ChaCha20, which is extremely fast, and sits entirely in userspace, avoiding a system call. We then prefer getrandom over getentropy, because the former has been available longer on Linux, and then OpenSSL. Finally, if none of those are available, we use /dev/urandom, because most Unix-like operating systems provide that API. We prefer options that don't involve device files when possible because those work in some restricted environments where device files may not be available. Set the configuration variables appropriately for Linux and the BSDs, including macOS, as well as Windows and NonStop. We specifically only consider versions which receive publicly available security support here. For the same reason, we don't specify getrandom(2) on Linux, because CentOS 7 doesn't support it in glibc (although its kernel does) and we don't want to resort to making syscalls. Finally, add a test helper to allow this to be tested by hand and in tests. We don't add any tests, since invoking the CSPRNG is not likely to produce interesting, reproducible results. Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>